

Table of Contents

Cover
Table of Contents
Title Page
Copyright
Dedication
Foreword
Preface
Acknowledgments
About the Companion Website
Chapter 1: Data Analysis with R

1.1 Introduction
1.2 Modern R Programming
1.3 Bioconductor
1.4 Reproducible Data Analysis
1.5 Summary

Chapter 2: Introduction to Mass Spectrometry Data
Analysis

2.1 An Example of Mass Spectrometry Data
Analysis
2.2 Using the Tidyverse in Mass Spectrometry
2.3 Dynamic Reports with RMarkdown
2.4 Summary

Chapter 3: Wrangling Mass Spectrometry Data
3.1 Introduction
3.2 Accessing Mass Spectrometry Data
3.3 Types of Mass Spectrometry Data

clbr://internal.invalid/book/OPS/cover.xhtml

3.4 Result Data
3.5 Example of Wrangling Data: Identification Data
3.6 Wrangling Multiple Data Sources
3.7 Summary

Chapter 4: Exploratory Data Analysis
4.1 Introduction
4.2 Exploring Tabular Data
4.3 Exploring Raw Mass Spectrometry Data
4.4 Chromatograms and Other Chemical
Separations
4.5 Summary

Chapter 5: Data Analysis of Mass Spectra
5.1 Introduction
5.2 Molecular Weight Calculations
5.3 Statistical Analysis of Spectra
5.4 Summary

Chapter 6: Analysis of Chromatographic Data from
Mass Spectrometers

6.1 Introduction
6.2 Chromatographic Peak Basics
6.3 Fundamentals of Peak Detection
6.4 Frequency Analysis
6.5 Quantification
6.6 Quality Control
6.7 Summary

Chapter 7: Machine Learning in Mass Spectrometry
7.1 Introduction
7.2 Tidymodels

7.3 Feature Conditioning, Engineering, and
Selection
7.4 Unsupervised Learning
7.5 Using Unsupervised Methods with Mass
Spectra
7.6 Supervised Learning
7.7 Explaining Machine Learning Models
7.8 Summary

References
Index
End User License Agreement

List of Illustrations

Chapter 1
Figure 1.1: RStudio startup interface.
Figure 1.2: Accessing elements of a data.frame.
Figure 1.3: Using base R plot() to show a time-of-
flight spectrum of serine (C3H...
Figure 1.4: Using ggplot2 to show a time-of-flight
spectrum of serine.
Figure 1.5: Using ggplot2 with classic theme to
show a time-of-flight spectrum o...

Chapter 2
Figure 2.1: TIC plotted using R’s base graphics
system.
Figure 2.2: TIC plotted using ggplot2.
Figure 2.3: Customized TIC using the layering
features of ggplot.

Figure 2.4: Comparison of adjacent MS level 1
scans: 327 and 338 for precursor m...
Figure 2.5: Comparison of adjacent MS level 1
scans: 327 and 338 for precursor m...
Figure 2.6: Comparison of adjacent MS level 1
scans: 349 and 360 for precursor m...
Figure 2.7: HTML output from RMarkdown.

Chapter 3
Figure 3.1: Summary of data types and applications
used in mass spectrometry.
Figure 3.2: XML schema describing the Skyline
main document. Required components...
Figure 3.3: XML schema describing the Skyline
protein element.

Chapter 4
Figure 4.1: Distribution of compound responses.
Figure 4.2: Distribution of quantifier peak retention
times.
Figure 4.3: Qualifier peak retention time versus
quantifier peak retention time.
Figure 4.4: Comparison of retention times and ion
ratios.
Figure 4.5: Comparison of quant peak area and ion
ratios.
Figure 4.6: Counts of internal control PSM
identifications by batch and fraction.
Figure 4.7: Mass spectrum of precursor for
APLDNDIGVSEATR in Batch 1, Fraction 5.

Figure 4.8: Profile spectrum of precursor for
APLDNDIGVSEATR in Batch 1, Fraction 5.
Figure 4.9: Details of m/z 844.43864 profile peak in
Batch 1, Fraction 5.
Figure 4.10: Comparing picked m/z values with
theoretical monoistopic values.
Figure 4.11: Heatmap from MSmap using 1 Da
binning.
Figure 4.12: Heatmap for Batch 1 Fraction 5.
Figure 4.13: Zoomed in heatmap for the peptide at
m/z 844.4 and retention time 47...
Figure 4.14: Zoomed in heatmap for the peptide at
m/z 844.4 and retention time 47...
Figure 4.15: Zoomed in heatmap for the peptide at
m/z 844.439 and retention time ...
Figure 4.16: Extracted ion chromatogram for the
ions between 844.43 and 844.45.
Figure 4.17: Extracted ion chromatogram for the
ions between 844.43 and 844.45. T...
Figure 4.18: Extracted ion chromatograms
overlayed and shown for the retention ti...
Figure 4.19: Plot of the three SRMs used for
quantifying and qualifying codeine.
Figure 4.20: Picked IS peak using xcms CentWave
algorithm.

Chapter 5
Figure 5.1: Comparison of theoretical and observed
isotope m/z and intensities f...

Figure 5.2: ESI spectrum of codeine from Waters
LC-MS qToF.
Figure 5.3: TMT 10plex fragments from
MSV000086195 Batch 1, Fraction 5 (Scan 215...
Figure 5.4: Raw intensity for all reporters of the
internal control peptides for...
Figure 5.5: Overlay of the observed -score with
the distribution of -scores fo...
Figure 5.6: Comparison of raw and normalized
responses for all the reporters in ...
Figure 5.7: Comparison of raw and normalized
responses for all the internal cont...
Figure 5.8: Overlay of the observed -score with
the distribution of -scores fo...
Figure 5.9: Normalized intensities for all the
reporters of the human COX2 prote...
Figure 5.10: Overlay of the observed -score with
the distribution of -scores fo...
Figure 5.11: Boxplot of normalized reporter values
for human COX2 reporter intens...

Chapter 6
Figure 6.1: Plot of the chromatogram for quantifier
ion in Sample 11.
Figure 6.2: Asymmetric least squares baseline with
lambda = 10 and p = 0.005.
Figure 6.3: Baseline corrected signal using ALS
algorithm.
Figure 6.4: Intercepts at the front and back edges
of the peak.

Figure 6.5: First and second derivative overlay on a
real chromatographic peak.
Figure 6.6: First and second derivative variations
around zero. The first deriva...
Figure 6.7: Deviations of the raw data from the
smoothed trace using the SG quad...
Figure 6.8: Q-Q plot of the noise component of raw
intensity data. The data are ...
Figure 6.9: Chromatogram with normally
distributed noise.
Figure 6.10: Q-Q plot for censored noise region.
Figure 6.11: Q-Q plot showing the imputed values
and the lines for the normal dis...
Figure 6.12: Blank region smoothed with the SG
order two filters. Smoothing the i...
Figure 6.13: Start and end times picked using the
derivative method.
Figure 6.14: The Mexican Hat mother wavelet used
in “MassSpecWavelet,” which can ...
Figure 6.15: CWT coefficients for the wavelet
transformation at multiple sales fo...
Figure 6.16: CWT coefficients main peak showing
the local maximum in both intensi...
Figure 6.17: Local maxima of CWT coefficients.
Figure 6.18: Wavelet coefficients from the scale = 1
transform of the sample 11 t...
Figure 6.19: Comparing peak start and end times
computed from derivatives and xcm...

Figure 6.20: DFT of the sample 11 quant trace
obtained using the FFT algorithm.
Figure 6.21: The magnitude spectrum of the sample
11 quant trace in the Nyquist l...
Figure 6.22: Filter coefficients for Boxcar and SG
filters. Both are length 9, an...
Figure 6.23: Raw data smoothed with Boxcar and
Savitzky–Golay filters. Note the d...
Figure 6.24: Frequency response of the Boxcar and
Savitzky–Golay filters showing ...
Figure 6.25: Backward calculated sum of the
variance of the FT coefficients showi...
Figure 6.26: The sinc function is created in the time
domain by a simple cutoff i...
Figure 6.27: Raw data filtered by simple truncation
of high-frequency coefficient...
Figure 6.28: The Kaiser windowed sinc function
compared to the shapes of both the...
Figure 6.29: The Kaiser windowed sinc function
compared to the frequency response...
Figure 6.30: Raw data smoothed with an optimized
FIR filter.
Figure 6.31: Linear calibration using
weighting.
Figure 6.32: Residuals from the linear fit of the
calibration data using weighting.
Figure 6.33: Residuals from a quadratic fit of the
calibration data using weighting.

Figure 6.34: An example of a calibration fit that
rolls over, which means there a...
Figure 6.35: An example of a Padé[1,1] calibration
fit.
Figure 6.36: Residuals from a Padé[1,1] fit of the
calibration data using weighting.
Figure 6.37: An example of a Padé[1,1] calibration
fit of a saturated calibrator....

Chapter 7
Figure 7.1: Visualization of missing values in a data
set.
Figure 7.2: First and second principal components
for the SAR positive ion samples.
Figure 7.3: Plot of the top 10 principal components
and their percent of varianc...
Figure 7.4: K-means clustering of the positive ion
samples for the SAR-R, SAR-S,...
Figure 7.5: Hierarchical clustering of positive and
negative features for SAR-R ...
Figure 7.6: The angle between the
normalized vector from an unknown mass spectrum
(), and the normalized vector from a library
spectrum (), is perfectly correlated with the
Euclidian distance between the endpoint
locations on a hypersphere.
Figure 7.7: Binned m/z vector for tryptophan from
MoNA library.
Figure 7.8: The bias-variance trade-off is shown in
terms of model complexity. T...

Figure 7.9: A visual representation of the
importance attributed to variables in...
Figure 7.10: ROC curve for logistic regression
classification of lorazepam (posit...
Figure 7.11: The confusion matrix for the logistic
regression classifier showing ...
Figure 7.12: Precision-recall curve for the
classification of the positive case (...
Figure 7.13: Measurement of SVM performance on
the benzodiazepine data at differe...
Figure 7.14: The ROC curve for the tuned support
vector machine classifier using ...
Figure 7.15: Precision-recall curve for the SVM
classification of the positive ca...
Figure 7.16: Feature importance for the SVM model
fit to the benzodiazepine data ...
Figure 7.17: Performance measures for
hyperparameter values found using a Bayesia...
Figure 7.18: The ROC curve computed from the
cross-validation results for the bes...
Figure 7.19: The ROC curve computed from the test
data using the best model selec...
Figure 7.20: Precision-recall curve for the selected
model applied to the test da...
Figure 7.21: Feature importance for the top 30
metabolites using the native XGBoo...
Figure 7.22: Force plots using SHAP values that
show which features drove the pre...
Figure 7.23: Force plots using SHAP values that
show which features drove the pre...

List of Tables

Chapter 2
Table 2.1: MS2 spectral quality summary.

Chapter 3
Table 3.1: Overall investigation description.
Table 3.2: Instrument method data.
Table 3.3: Some basic XPath expression syntax.
Table 3.4: MS experimental result file types.
Table 3.5: Vendor raw data formats.
Table 3.6: Open data formats for raw mass
spectrometry data.

Chapter 5
Table 5.1: Calculation of monoisotopic mass for

Table 5.2: Common positive ion adducts and their
m/z values
Table 5.3: Calculation of adducts to codeine:
C18H21NO3

Chapter 7
Table 7.1: Cosine similarity search results
Table 7.2: Euclidian distance search results
Table 7.3: Tanimoto coefficient search results

R Programming for Mass

Spectrometry

Effective and Reproducible Data

Analysis

Randall K. Julian

Indigo BioAutomation, Inc.

Carmel, IN, USA

Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including
rights for text and data mining and training of artificial intelligence
technologies or similar technologies.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.
No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, except as permitted under Section 107 or
108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750–8400, fax (978) 750–4470, or
on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748–6011, fax (201) 748–6008, or
online at http://www.wiley.com/go/permission.
Trademarks

Wiley and the Wiley logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries
and may not be used without written permission. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.
Limit of Liability/Disclaimer of Warranty

While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy
or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No
warranty may be created or extended by sales representatives or written sales
materials. The advice and strategies contained herein may not be suitable for
your situation. You should consult with a professional where appropriate.
Further, readers should be aware that websites listed in this work may have
changed or disappeared between when this work was written and when it is
read. Neither the publisher nor authors shall be liable for any loss of profit or
any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.
For general information on our other products and services or for technical
support, please contact our Customer Care Department within the United
States at (800) 762–2974, outside the United States at (317) 572–3993 or fax
(317) 572–4002.
Wiley also publishes its books in a variety of electronic formats. Some content
that appears in print may not be available in electronic formats. For more
information about Wiley products, visit our web site at www.wiley.com.
Library of Congress Cataloging-in-Publication Data has been applied for.

http://www.copyright.com/
http://www.wiley.com/go/permission
http://www.wiley.com/

Print ISBN: 9781119872351
ePDF ISBN: 9781119872368
ePub ISBN: 9781119872399
oBook ISBN: 9781119872405
Cover Design: Wiley
Cover Image: © Valery Rybakow/Shutterstock

To Lauren:

You made it possible for me to start this book. Thank you

for all your help while I took time away from you to finish

it.

Foreword

This is not only a book about R coding, rather it is an
indicator of where we are in the journey from an analog
real world to one ruled by digital data. We stand at an
inflection point on the science/technology pathway. Behind
us lies the golden ages of empirical discovery science, more
attractive as it recedes into the distant past…perhaps to the
steppes of Central Asia, where the night skies whispered
their thousand questions and imaginative answers –
supported by primitive observations – were provided in
response. Now, many mysteries have been removed and
replaced by high-quality data. This is not an unalloyed
good, and there must be some regret, even among those
who do not march under the “Stop the Technology
Madness” banner.
Author Randy Julian’s own life in science has covered the
before and after of this inflection timepoint, between the
sparse-data era and the current rich-data hegemony. He
started his PhD in Chemistry in 1990 with measurements of
reactive collisions of polyatomic ions impacting monolayer
surfaces in a vacuum, as shown by the simple bond-
formation reaction illustrated in Surface reactions and

surface-induced dissociation of polyatomic ions at self-

assembled organic monolayer surfaces [1] / American
Chemical Society.

Randy Julian was working in a basement lab where for
decades the time taken for data to emerge from
instruments was so slow that it was possible to think about
it as it arrived, to adjust the planned experiment, and even
to draft an outline of a planned scientific publication. A
perfect resonance existed between the instrumentation and
the experimenter. The dramatic nature of the changes then
underway is seen in work from Randy Julian’s second year
at Purdue, when he coded a multiparticle numerical
simulation of the trajectories of realistic numbers of ions
under the actual electrical fields of a mass spectrometer
and matched it to the experimental mass spectrum,
including peak shapes. Then, in a tour de force experiment,
Large Scale Simulation of Mass Spectra Recorded with a

Quadrupole Ion Trap Mass Spectrometer [2], likely one of
the earliest studies in analytical chemistry to use
supercomputers, he simulated the individual ion dynamics
of a system of thousands of ions in an electric field and
subjected to collisions by harnessing computers ranging
from the Connection Machine at Los Alamos National
Laboratory to the Cray to solve the classical equations of
motion in sub-microsecond increments using parallel and
vector processing.
Three years later, as a fresh employee at Eli Lilly & Co. in
Indianapolis, Dr. Julian persuaded management to provide
him with a factory of mass spectrometers so that he could
examine millions of chemical constituents generated by
Lilly’s massive collection of natural product extracts. Many
current drugs come from such sources, making it a
worthwhile challenge. It took over two years to record the
mass spectra of all these samples. Dr. Julian’s subsequent
career has been along similar lines, only faster and wider in
scope. His company (Indigo BioAutomation, Inc.) currently
processes and validates some 300 million mass
spectrometry/liquid chromatography clinical tests a month.

They perform data quality assurance for every major
diagnostics laboratory in the United States – it is likely that
your physician has received data analyzed by Indigo. Had
Randy lived in California instead of Indiana, a career like
his would have been emblazoned on T-shirts and funded
rock concerts. What does one say of a scientist whose
command of experimental data is such that the difference,
at six sigma, between Gaussian and Lorentzian curves can
form the basis for solid medical decisions.
Randy Julian’s career has been centered on analytical
chemistry, a topic with wide societal applications and now
often referred to as measurement science to avoid the use
of offensive terms. The subject has two components; the
instrumentation used to make the measurement and the
digital processing used to maximize the quality of the
information output. Data science provides access to the
information produced by instrumentation acting on
chemicals. Dr. Julian’s work and this volume focus on the
latter, but a major impact on the design and utilization of
novel instrumentation is likely too. Instruments like mass
spectrometers record spectra on an entire world of
chemicals, in atomic, ionic, or molecular form, as pure
materials or organized into biopolymers, or in the form of
neurons or biofluids, or whole organisms. The rapid growth
in data science and technology, which is central to this
book, has allowed the extraction of detailed information,
often biomedical in nature, from this data. This
development transformed the way science is done and how
it is reported. The author himself played a significant role
in persuading the editors of leading journals to require that
the published data on which published conclusions were to
be based be archived and widely available. This has allowed
quality checks on data to be performed post facto to ensure
the validity of the conclusions. Not surprisingly, a “crises of
reproducibility” is being experienced as some important

studies fail to withstand the withering examination now
possible.
Unarguably, the landscape of science and technology has
undergone highly significant changes in the past three
decades, but what fueled this daemon? Perhaps the beast is
omnivorous, requiring physics and microdevices and
systems of knowledge and algorithms to be combined and
harnessed to the instrumentation that provides the
analytical chemical data. The traditional tools of academia –
books and lectures – were successful in driving this
transformation. Books like Diefendorfer’s ground-breaking
Principles of Electronic Instrumentation addressed the
marriage of physics and EE to analytical measurements. A
required graduate course in the Analytical Chemistry
program at Purdue University has also made a remarkable
contribution to the combination of data handling and
chemical measurement. Now in its fifth decade, CHM 621
was initiated and taught for many years by Prof. Fred Lytle,
and it has served as the foundation upon which hundreds of
PhD students built their experiments and data
interpretations. Randy Julian was enrolled in this course in
1990, and during the next two years, Randy taught a course
on how to write programs based on the principles taught in
Fred’s course. The course has had a wide impact over the
years in samizdat lecture notes. After Randy left Eli Lilly &
Co. and started Indigo BioAutomation, Fred retired from
Purdue to join Randy at Indigo. In this book, Randy has
updated his Purdue programming course notes and
combined them with his experience over the past three
decades. Meanwhile, Fred Lytle has also been reworking
his lecture notes and will soon complete his book. Over the
years, they have made a formidable team.
This book will help create big-data scientists, but it is likely
also to stimulate readers to improve the next generation of
analytical instruments. Data science has already allowed

mass spectrometry to tame the ‘wildness’ of biology and
produce reliable, actionable information. Randy Julian’s
graduate work concerned a single bond-forming reaction
occurring on a nearly perfectly characterized surface, and
the readout consisted of intensity measurements in two
channels of mass using essentially time-invariant signals.
The data processing tools in this book accommodate
millions of analytes from millions of patients. As Brison
Shira, a current PhD student, commented, “Randy once
applied MS to single analytes, and he now applies it to
populations of patients.” There is power in this book.

R. Graham Cooks

West Lafayette, June 2024

Preface

This book will teach you how to analyze data generated by
mass spectrometers using R [3]. The modern mass
spectrometer is a marvel of science and engineering. What
was once an imposing instrumental method of analysis with
limited application has now become a workhorse in research
and industry. At the same time, the boundaries of
measurement capability are rapidly expanding with each new
generation of analyzer, detector, and ionization method. At
the outer limits are instruments that still act like
temperamental thoroughbreds, which, on any given day,
deliver extraordinary results or confusing noise. Workhorse
instruments, on the other hand, often operate in a factory-
like mode, producing data that is changing how we discover
and develop drugs, diagnose and treat diseases, and
understand our drinking water, food, the oceans, and the
atmosphere. Mass spectrometers are used for measurements
in such large numbers that ensuring problems with data
analysis do not corrupt results is critical. Well below the
limits of performance, mass spectrometers can generate such
huge volumes of complex data that the analysis is beyond
simple statistics and enters the domain of data science. For
nearly all of the uses of mass spectrometry, there is a need
for more advanced and more reproducible data analysis than
can be done in spreadsheets.

The Main Goal of this Book

The main goal of this book is to show how to analyze mass
spectrometry data effectively and reproducibly using the R
programming language. Any mass spectrometrist can learn
to go beyond spreadsheets and build data analysis solutions
using R in a reasonable amount of time. My approach will be

like climbing a ladder. Through the lens of mass
spectrometry, I will start by introducing native features of
the R language. On the next rung are the packages that
simplify data storage and retrieval, data manipulation,
statistics, and visualization. The next step uses modules
originally created to help with molecular biology tasks that
also work with data from mass spectrometers. Further up the
ladder are mass spectrometry-specific modules used to
perform data manipulation and analysis for data generated
specifically by mass spectrometers. Beyond that, the ladder
goes on, but this book will end on the machine learning rung,
far from the top.
Because the intended audience for this book is relatively
broad, different sections will be of more value to some
readers than others, so hopefully, familiar parts can be
skipped. The example code is intended to show techniques
and methods for analyzing mass spectrometry data that are
effective and reproducible. However, within the example
code, I hope you will find solutions to common problems that
repeatedly appear in the analysis of mass spectrometry data.
A word of warning: this is a code-heavy book, and the code is
meant to be read. If some of the syntax is unfamiliar, please
refer to some of the amazing books on R data analysis
available. Along the way, I will provide pointers on where to
find more information outside the scope of this book. I hope
that some of the references will provide additional reading in
areas of interest.

What You Will Learn

You will learn to analyze mass spectrometry data using R in a
way that is widely accepted and supported by the data
science community. In addition, you will learn to use various
packages beyond the main R program to organize data,
programs, and reports. Using examples from mass

spectrometry research, you will learn how to understand
your data, wrangle it into easy-to-manage structures, perform
exploratory data analysis, visualize, and then analyze it to
produce reproducible findings. You will also learn how to
integrate description and discussion with data and code so
you can build web pages and manuscripts about your analysis
that other researchers can reproduce.

Conventions

This book contains three types of text: regular text, examples
of R code, and output from code. In the body of the book,
references to elements of the R programming language will
appear in a monospaced text typeface. Code that you can type
in and execute will be in a gray box and look like this:

a <- 1 + 1

Also, R implicitly calls print() when a single variable name is
given. But sometimes I will explicitly call print.

a

[1] 2

When generating output, console output is shown with two
hash symbols, ##. These symbols allow text to be
distinguished from other text in this book and copied to into
R, where the ## symbols are treated as comments. If the
output is a series, there will be a leading number like [1]
indicating the starting index of the series printed on that line.

Getting Started

To get started, download the latest version of R for your
machine. R is an open-source project and is free. Installation
packages are available for macOS, Windows, and Linux. The
R project webpage is https://r-project.com, and you can find
installation packages there.
I worked on the example for this book using the RStudio
integrated development environment [4]. It is also free and
also runs on macOS, Windows, and Linux. R can be used with
its own user interface or the command line. It can also be
used from other environments and editors. The examples
should work with whatever you are comfortable with.
Once you have R installed, there are several add-on packages
that you will need to run the examples. RStudio makes it easy
to install and update packages from the R project repository
called CRAN. In some chapters, I will give directions for the
installation of select packages, but the following are the basic
packages needed for most of the examples in this book.

list.of.packages <- c("tidyverse", "tidymodels",

"rmarkdown")

install.packages(list.of.packages)

For mass spectrometry-specific packages, I will mostly rely
on the Bioconductor project repository [5]. Unlike CRAN,
Bioconductor packages are built around a core set of
packages, and the entire collection is designed to be as
interoperable as possible. In addition, the Bioconductor
project is versioned as a whole and operates on its own
release schedule to help improve interoperability and
consistency. The BiocManager package [6, 7] is a specialized
package management system used to install packages from
Bioconductor. To install Bioconductor packages, install its
package manager first:

https://r-project.com/

install.packages("BiocManager")

Several packages are used for reading raw mass
spectrometry data: mzR [8–13], used for fast, low-level
reading of open format XML files. MSnbase [14, 15] and
Spectra [16] are both higher level packages that can use mzR,
MsBackendMgf [17], MsBackendMsp [18], and other backends
(format-specific file interfaces) to read data. Most packages
used in this book are from either Bioconductor or CRAN;
however, in Section 5.2.4, I will show how to install packages
from other repositories, specifically from the source code
repository system called GitHub.
To install Bioconductor packages, you just use the install()
function from the BiocManager package:

bioc.packages <- c("MSnbase", "Spectra", "mzR",

"MsBackendMgf", "MsBackendMsp")

BiocManager::install(bioc.packages, update=FALSE)

After you have these packages installed and can run RStudio,
you are ready to start.

About the Code and Examples in this

Book

The code and information in this textbook have been
carefully reviewed and tested to the best of the author’s
ability. However, as with any programming resource, errors
or inaccuracies may occur. The author and publisher make
no warranties or representations regarding the accuracy,
completeness, or suitability of the code and information
presented.
Readers who use or implement any code from this book do so
at their own risk. Neither the author nor the publisher shall

be held liable for any damages or consequences arising from
the use of the information or code contained herein.
It is recommended that readers thoroughly test and validate
any code before using it in production environments.
The examples, citations, and references to external work or
products in this book are used for instructional purposes only
and do not constitute an endorsement by the author or
publisher. Such references are provided solely to illustrate
concepts and techniques discussed in the text.

Acknowledgments

I have many people to thank for being able to share this
book with you. First, I would like to thank everyone at
Indigo BioAutomation. I am fortunate to work on such an
incredible team. I want to thank Prof. Fred Lytle, who
mentored me as a graduate student and became an even
more significant influence and friend after retiring from
Purdue and coming to Indigo. I’d also like to thank Rick
Higgs, who got me started with R in the 1990s and
introduced me to machine learning before it was a
buzzword. None of this work would have been possible
without my PhD adviser, Prof. R. Graham Cooks, who,
besides teaching me mass spectrometry, allowed me to
teach a programming class to chemistry graduate students
before finishing my thesis and then arranged for me to
teach a graduate-level data science course at Purdue. I am
forever thankful for my experiences at Purdue. Thank you
to Russ Grant, Nigel Clarke, Brian Rappold, Patrick
Mathias, and Shannon Haymond, with whom I’ve worked
and taught and are now dear friends. You’ve all greatly
impacted my development as a scientist and a person. I
would especially like to thank Stephen Master who
provided valuable comments and suggestions to an early
draft of the book. I’d also like to thank the Harrold family:
Dave, Chris, and Amber, for running the Mass

Spectrometry & Advances in the Clinical Laboratory

(MSACL) conference and giving me the opportunity to
teach short courses and help expand the data science
program. So many people have helped in my development
that I cannot thank them all here, but no one helped me
more than my parents, who supported my early addiction to
programming computers. Thanks, Dad, for teaching me
about computer hardware, and Mom, for putting up with

me staying up all night with my brother Mike writing
computer games.

About the Companion Website

This book is accompanied by a companion website:
www.wiley.com/go/julianrprogramming

The website includes:

Figures
Codes
Data

http://www.wiley.com/go/julianrprogramming

Chapter 1

Data Analysis with R

This chapter will give an overview of R, the base R libraries,
the Tidyverse packages, the Bioconductor project, and
RMarkdown. I will also describe R scripting and the RStudio
integrated development environment (IDE). If you are
familiar with these topics, feel free to skip this introduction.
The goal is for you to have a working R development
environment, understand the basic ideas behind the tidyverse
and the Bioconductor projects, and be able to use libraries
and packages from both Comprehensive R Archive Network
(CRAN) and Bioconductor.

1.1 Introduction

The R programming language [19] is an open-source project
inspired by both the S language [20] and Scheme [21]. Over
the decades since its initial development, the data science
community has embraced R to an extraordinary level. While
you can use almost any programming language for data
science, R was one of the first freely accessible languages to
make statistics its primary focus. Statistics is one of those
subjects in which experts are practically necessary. For a
nonstatistician, having highly reliable statistical functions
improves the quality of analysis, especially compared to
writing statistical algorithms from scratch. R is an
interpreted language, and a community of dedicated experts
continually updates it. Some of the best computational
statisticians in the world actively support the statistical
functions available in R. On top of these incredible
contributions, the applied statistical community has created a
fantastic array of add-in packages to handle specific analysis
requirements. The core components of R and its vast library

of packages allow for a wide range of statistical and visual
analyses.
So why learn a programming language like R instead of just
using a spreadsheet program like Excel? That’s a good
question, which has a good answer. Excel has become very
powerful over the years but has significant drawbacks for
demanding data analysis tasks. First, each cell in a
spreadsheet can be any data type; you can’t tell what it is by
looking. A cell might look like a date, but it might also be a
string. Or, it could have a formula that produces the content.
The equation likely references other cells and is often created
by cutting and pasting. Performing calculations this way
makes all but the most trivial spreadsheets challenging to
test and debug. Despite the limitations of spreadsheets, we
almost all use spreadsheets for some tasks. But we have all
experienced some errors when working with spreadsheets.
This lack of robustness keeps most people working in data
science away from spreadsheets. The one thing spreadsheets
seem particularly good at is creating and editing text files
(usually saved and loaded as comma-separated value or
“CSV” files), but even here, trouble is just waiting to strike.
CSV files often have a header that gives the names of the
columns. When loaded into a spreadsheet, this row becomes
another row in the sheet. When a spreadsheet has no header
row in the data, a text file created from it will also have no
header. At first, this may seem trivial, but since the top of a
spreadsheet shows the names of the columns assigned by the
program, the application-specific column names need to
appear as text in the first data row. If someone reads the
resulting text file assuming that a header is present and it’s
not, then the first row of numeric data can be consumed as
the header, and all of the data will then be loaded as if the
read function skipped the first row. Again, while it sounds
trivial, but mishandling header rows in spreadsheets has
done tremendous damage to data analysis over the years. If

you use a spreadsheet to help edit data, be careful in later
analysis steps.
Another famous problem with spreadsheets is that some
information will be interpreted by programs like Excel as
dates when they are strings that look like dates. Excel will
quietly change your data without warning, and if you don’t
catch it, then when you save your file, some of the values may
be corrupted by the string-to-date conversion. You can see a
concrete example of this error: load a file that contains
chemical abstract service (CAS) registry numbers. If you load
the CAS number 6538-02-9 into Excel, for example, it will
convert it into the date 2-9-6538, and then when you convert
it to a number, you will get 1694036 (this is from an actual
Microsoft support case from 2017 which I reproduced at the
time of writing). People doing data science use spreadsheets
all the time, but you have to be very careful and look for at
least these two big problems.
You can perform data analysis in any computer programming
language. While I will not cover them, Python and Julia are
first-rate languages and good choices for any data analysis
project. Python, in particular, has been the go-to language for
the exploding machine-learning community. Like R, Python is
an interpreted language with excellent community support.
Many data analysts learn R and Python and switch between
them depending on the project. The main difference is that
the central focus of statistical analysis in R, whereas Python
is a general programming language with good statistical
libraries. Julia is different. Its community motto is: “Walk like
Python; Run like C.” Julia is faster than Python and R in most
cases, depending on the libraries you use. I encourage
everyone working in data analysis to become familiar with
Python and R. It will also pay to be aware of Julia. All three
languages will run as automated scripts, and all three have
development environments for writing more complex
programs. Recently, there has been a trend toward using a
notebook environment for programming, especially for

Python with its almost addictive Jupyter Notebook system.
Notebook environments allow mixing code with text by
putting each in different types of cells. Opening a notebook
and typing in natural language in some cells and code in
others is a very agile way to work with code and data.
However, working in a notebook can sometimes produce a
mindset that you are not actually developing a program but
just a document with some code mixed in. That mindset can
lead to a lot of cut-and-paste programming, and other
programming practices can make for messy and hard-to-
reproduce analysis. It’s not a defect of the notebook concept
but something to guard against when using them. Some
people will start in a notebook environment, and if the
program becomes complex, they will switch to an IDE. The
method of mixing natural language text and code is so
powerful that the approach can be used directly in the
RStudio IDE for R. With RStudio, you don’t have to choose
between working in an IDE or a notebook since both
practices are supported.
R supports mixing natural language and code using the knitr
package to implement literate programs [22], introduced
below. One of my main objectives here is to show analysts
how to improve the reproducibility of mass spectrometry data
analysis. I will return to using R combined with knitr and
RMarkdown to create literate programs throughout the book.

1.2 Modern R Programming

This section will teach you how to use R as a scripting
language for batch processing and from within the IDE
RStudio. Further, you will learn about the base packages of R
and the modern approaches to data management and
analysis introduced by the tidyverse collection of packages,
including the plotting system provided by the ggplot2
package.

1.2.1 R as a Scripting Language

As described earlier, R belongs to the family of interpreted
languages. In UNIX-type systems, languages like Perl, Shell-
scripts, Ruby, and Python can be run as scripts by the OS.
Any R program can be typed into a text editor and run from
the command line as a script.
Take this trivial program:

This program should be saved in a file called

"hello.R"

print("Hello, R")

To run this example and have the output display on in the
console, you can use the Rscript program:

Rscript hello.R

The output to the console will be:

[1] "Hello, R"

When you want to run an R program as part of a
noninteractive, automated process, you can use batch mode.
Running in batch mode allows you to pass arguments to the
program and have the output go to a file rather than the
console. Starting the R interpreter with the options CMD BATCH
puts the program into batch mode. The R interpreter will
assume that the working directory is the current directory,
which you may need to change depending on how your
system runs automated scripts.

leading './' is for the macOS, change this for your

OS

R CMD BATCH ./hello.R

This will send all of the output of the program to a file called
hello.Rout In this case, it is the output:

R version 4.3.1 (2023-06-16) -- "Beagle Scouts"

Copyright (C) 2023 The R Foundation for Statistical

Computing

Platform: aarch64-apple-darwin20 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain

conditions.

Type 'license()' or 'licence()' for distribution details.

 Natural language support but running in an English

locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in

publications.

Type 'demo()' for some demos, 'help()' for on-line help,

or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

> print("Hello, R")

[1] "Hello, R"

>

> proc.time()

 user system elapsed

 0.130 0.037 0.150

While running R programs as scripts from the command line
is helpful, it is much more typical to write and run programs

in an IDE. IDEs have been available for languages like C/C++
and other compiled languages for decades. Various R
installation packages also come with an IDE called the R GUI.
It is sufficiently powerful to allow anyone to get started, while
missing many convenient features of RStudio. As data science
has matured, additional tools are now available. In this book,
I will focus on using R via the powerful and popular IDE for R
called RStudio.

1.2.2 RStudio

Software development and engineering tools have matured
over the years. With the arrival of high-speed hardware,
there has been a revival of interpreted languages, like R.
Interpreted languages allow development environments extra
flexibility by using real-time interpretation to assist the
programmer while writing a program. Since R is intended
primarily as a statistical analysis language, a good IDE makes
it easy to write and test code, see plots, and examine data.
RStudio extends the concept of the IDE by integrating with
the powerful report-generating packages used for
reproducible research. RStudio is free (as in open and beer),
and the RStudio team has shown itself to be a dedicated
contributor to R, supporting some of the most important
packages, including tidyverse and many others.
There are versions of RStudio for Windows, Mac, and many
Linux distributions, and since it is open source, you can build
it yourself from the source code if there is no binary
distribution for your OS. To get started, go to the RStudio
website (rstudio.com) and select the download for your
machine. Each binary has an installer with instructions. Once
you have RStudio installed, you can run it, and you should see
something like Figure 1.1.

http://rstudio.com/

Figure 1.1 RStudio startup interface.

1.2.3 Base R

Much of the power of R comes from the large collection of
base libraries developed by the R community. Currently,
there are 14 base packages and 15 recommended packages

[23]. These packages allow users to perform various
statistical analyses and data visualization. The various
distributions of R incorporate the base and recommended
packages. Over time, as new packages are developed, they
are usually shared using a repository called the CRAN, which
was created to make them available to the R community. The
recommended packages come from CRAN and are installed
with most distributions of R. Together, the base and
recommended packages have become known as Base R,
which is usually sufficient for most statistical analysis and
data plotting tasks.

Base R provides the mechanisms for essential data
manipulation on several fundamental data types. Beyond
scalar variables, base R allows you to manipulate vectors,
sequences, matrices, lists, and strings. Probably the most
significant data type provided in base R is the data.frame. A
data.frame is a rectangular table where each column is
assigned a data type and can have a name. Each row can also
be named, even if the name is simply a row number. What
makes Data Frames (and other newer data types derived
from the Data Frame) powerful is that data can be
manipulated and selected with conditional statements. The
syntax of Data Frame operations can be slightly confusing,
but learning it allows you to work with data in R in ways that
are much easier than most programming languages.

1.2.4 Basics of Data Frames

To demonstrate how to use the data.frame, I’ve extracted a
part of the Human Metabolite Database [24–28] into a CSV
file. CSV files are simple text files that usually contain the
column names in the first row. The base R function to read a
CSV file is conveniently named read.csv().

hmdb_df <-

read.csv(file.path("data","hmdb_urine_metabolites.csv")

)

str(hmdb_df, width=72, strict.width="cut")

'data.frame': 4692 obs. of 6 variables:

$ accession: chr "HMDB0000001" "HMDB0000002"

"HMDB0000005" "HMDB000"..

$ name : chr "1-Methylhistidine" "1,3-

Diaminopropane" "2-Ketobu"..

$ formula : chr "C7H11N3O2" "C3H10N2" "C4H6O3"

"C4H8O3" ...

$ exact_mw : num 169.1 74.1 102 104 300.2 ...

$ smiles : chr "CN1C=NC(C[C@H](N)C(O)=O)=C1"

"NCCCN" "CCC(=O)C(O)"..

$ status : chr "quantified" "quantified"

"quantified" "quantified"..

The str() function shows the structure of any R object, and in
this case, it shows that nmdb_df is a data.frame with 4692
rows (observations) and 6 variables (columns). The columns
have both names and types. Here the column names are
given next to the $ symbol, followed by the data type for that
row. The str() function also shows a sample of the data in
each column.
Once data is in a data.frame, there are several ways to access
specific elements, depending on your needs. For example,
you can access data by row, column, or specify both.
Figure 1.2 shows the syntax to access elements of a
data.frame.

Figure 1.2 Accessing elements of a data.frame.

A data.frame is a collection of rows and columns. Each
column has a specific data type and can have a name. Each
row can also have a name that can be used to access
particular observations. Columns and rows can also be
accessed by their index value, which is an integer number. In
R, it’s important to remember that indexing always starts at 1
rather than 0, as in many other languages.

Accessing elements of a data.frame uses the square bracket
notation: df[row,column]. In 1.2, you can see that selecting
the element in the first row and the third column (the value
of the chemical formula in the first row) is simply
hmdb_df[1,3]. Besides an index value, the third row has the
name formula. R can use the $ symbol to access a column’s
name. hmdb_df$accession returns an array of values from the
first column, and hmdb_df$formula returns an array of values
from the third column. The first elements of the array
returned in case of formula can be accessed with the same []
notation so that hmdb_df$formula[1] returns the first element
in the formula column. The ability to specify columns by name
is helpful when accessing data by name, and access by index
is helpful when using numeric loops to access each column.
To access all the data in the first column, you just leave the
row element empty: hmdb_df[,1]. Leaving the row or column
value blank returns all the elements, so this statement
returns all the rows from column 1.
In Figure 1.2, when single integers are used for rows or
columns, what is returned is a vector of the column’s data
type with no name.

head(hmdb_df[,1])

[1] "HMDB0000001" "HMDB0000002" "HMDB0000005"

"HMDB0000008" "HMDB0000010"

[6] "HMDB0000011"

class(hmdb_df[,1])

[1] "character"

The extract operator $ also returns a vector for the name
given:

head(hmdb_df$accession)

[1] "HMDB0000001" "HMDB0000002" "HMDB0000005"

"HMDB0000008" "HMDB0000010"

[6] "HMDB0000011"

The sequence operator : can also be used in the row and
column position to specify a range of rows or columns to be
returned. One important thing to notice is that when using
the : operator, the class returned is a data.frame rather than
a vector.

head(hmdb_df[1:4,])

accession name formula exact_mw

1 HMDB0000001 1-Methylhistidine C7H11N3O2 169.0851

2 HMDB0000002 1,3-Diaminopropane C3H10N2 74.0844

3 HMDB0000005 2-Ketobutyric acid C4H6O3 102.0317

4 HMDB0000008 2-Hydroxybutyric acid C4H8O3 104.0473

smiles status

1 CN1C=NC(C[C@H](N)C(O)=O)=C1 quantified

2 NCCCN quantified

3 CCC(=O)C(O)=O quantified

4 CC[C@H](O)C(O)=O quantified

class(hmdb_df[1:4,])

[1] "data.frame"

Another way to return a subset of a data.frame as a
data.frame is to combine the [] operator with a string name
of the column:

head(hmdb_df["exact_mw"])

exact_mw

1 169.0851

2 74.0844

3 102.0317

4 104.0473

5 300.1725

6 104.0473

class(hmdb_df["exact_mw"])

[1] "data.frame"

One of the most powerful aspects of the [] operator in R is
that a boolean vector can be used in place of the sequence
generated by the : operator. Using boolean vectors instead of
numeric sequences allows subsetting based on conditional
statements:

hmdb_df[hmdb_df["formula"] == "C4H8O3",]

accession name formula

exact_mw smiles

4 HMDB0000008 2-Hydroxybutyric acid C4H8O3

104.0473 CC[C@H](O)C(O)=O

6 HMDB0000011 3-Hydroxybutyric acid C4H8O3

104.0473 C[C@@H](O)CC(O)=O

14 HMDB0000023 (S)-3-Hydroxyisobutyric acid C4H8O3

104.0473 C[C@@H](CO)C(O)=O

188 HMDB0000336 (R)-3-Hydroxyisobutyric acid C4H8O3

104.0473 C[C@H](CO)C(O)=O

228 HMDB0000442 (S)-3-Hydroxybutyric acid C4H8O3

104.0473 C[C@H](O)CC(O)=O

358 HMDB0000710 4-Hydroxybutyric acid C4H8O3

104.0473 OCCCC(O)=O

367 HMDB0000729 alpha-Hydroxyisobutyric acid C4H8O3

104.0473 CC(C)(O)C(O)=O

status

4 quantified

6 quantified

14 quantified

188 quantified

228 quantified

358 quantified

367 quantified

Notice that the row component of the [row,column] statement
is a boolean vector with a value of TRUE for every row in which
the formula column value is equal to the string “C4H8O3.”
Again by leaving the row specification empty, the statement
returns all the matching rows. Since the row specification
was not a single value but a sequence, a new data.frame is
returned. Using conditional statements to subset a data.frame
is very powerful, but complex filtering can require convoluted
conditional statements, which are hard to debug. The next
section introduces a more modern method for subsetting
based on filtering.
There is much more to subsetting than the basics I’ve shown
here. You can find details in the “Subsetting” chapter in
Wickham’s excellent text: Advanced R [29].

1.2.5 The Tidyverse

A relatively new approach to managing data in R introduced a
notable advance in R programming called “Tidy Data.”
Programs that follow tidy data principles manage and access
data robustly, similar to modern database techniques.
The tidyverse is a collection of R packages intended to make
it easier to write readable R code and support reproducible
research. It was released in 2016 and is described in R For

Data Science [30] and is available free at
https://r4ds.had.co.nz/. The tidyverse team continually
updates the package, and the project enjoys broad support
from the R community.
To use the tidyverse, simply load it using the library()
function:

https://r4ds.had.co.nz/

library(tidyverse)

Loading the tidyverse metapackage adds the packages
ggplot2, tibble, tidyr, readr, purrr, dplyr, stringr, and
forcats.
Notice that dplyr masks two functions from the stats
package: filter() and lag(). The filter() function in dplyr is
central to how the tidyverse performs data subsetting. The
lag() function in dplyr creates a new vector offset from a
given vector by one element. When functions with the same
name are loaded from different packages, you can specify the
specific function by naming the package and using the ::
operator. The filter() function is probably one of the most
often used function names when using R packages useful for
mass spectrometry, because the verb filter has many
different meanings in this domain. In some cases, you want to
filter rows in a table. Other meanings include filtering a
range of m/z values or retention times. It can also mean
applying a signal processing filter to a dataset. It is often
necessary to access the specific version of filter() by
putting the package name first, like stats::filter(). As more
libraries are used, it is more important to specify the package
name.

1.2.6 Tidy Data

The main idea behind tidy data is that in a table, each column
represents a variable, and each row represents an
observation. You can create objects in which every element is
of a different type, but that data is difficult to deal with. In
the tidyverse, if you need to represent observations with a
variable that is duplicated across many observations, you
could add a new variable (column), but it might be a sign that
you should create a new table. Rather than duplicating
observations two tables can be constructed and then related

by a unique, shared variable. In database management, this
approach is called normalization, which aims to remove
duplicate entries by using multiple tables. There are
situations where you don’t want highly normalized data in
multiple tables. For example, systems like data warehouses
or data lakes use a single table with a high degree of
duplication to simplify filtering, grouping, and aggregation by
avoiding joining multiple tables. The tidyverse team has
explicitly declared that it is an opinionated project with
clearly stated ideas about what constitutes correct data
management. The functions in the dplyr package, which
provides the tools to manage data, are designed with
normalized, tidy data in mind. However, many application-
specific packages in R do not follow the tidy data principles.
In this book, I will focus on tidying the data returned by many
application-specific functions, so your data is easier to
understand and manipulate. A focus on tidy data will also
have the effect of making your data more compatible with the
other projects, like Tidymodels, which has grown up around
the tidyverse ecosystem.

1.2.7 The tibble: An Improved data.frame

The data.frame is an incredibly useful data structure and is
one reason data analysis in R is superior to using
spreadsheets. However, when analyzing complex data, the
data access and manipulation syntax can sometimes become
hard to read. One of the goals of the tidyverse approach is to
use functions to perform data organization and manipulation
at a higher level, rather than having to resort to low-level
base R syntax. Central to the tidyverse metapackage is the
dplyr (pronounced de-plyer) that implements tidy
manipulation functions. The dplyr package relies on a
modernized version of the data.frame class called tibble from
the tibble package. A tibble is a subclass of the data.frame
class, which means tibbles are data.frames, and anything

that works with a data.frame also works with a tibble.
However, a tibble is a simplified version of the data.frame
class, which for example, doesn’t use row names, among
other internal data representation changes. The tibble class
overloads many of the data.frame functions. The result is that
the default behavior of a tibble is, in some cases, quite
different from the data.frame parent class.
Data can be read directly into a tibble from a file, or you can
create a tibble from an existing data.frame.

hmdb <- as_tibble(hmdb_df)

print(hmdb)

A tibble: 4,692 x 6

accession name formula exact_mw

smiles status

<chr> <chr> <chr> <dbl>

<chr> <chr>

1 HMDB0000001 1-Methylhistidine C7H11N3O2 169.

CN1C=NC(C[C@H](N~ quant~

2 HMDB0000002 1,3-Diaminopropane C3H10N2 74.1

NCCCN quant~

3 HMDB0000005 2-Ketobutyric acid C4H6O3 102.

CCC(=O)C(O)=O quant~

4 HMDB0000008 2-Hydroxybutyric acid C4H8O3 104.

CC[C@H](O)C(O)=O quant~

5 HMDB0000010 2-Methoxyestrone C19H24O3 300.

[H][C@@]12CCC(=O~ quant~

6 HMDB0000011 3-Hydroxybutyric acid C4H8O3 104.

C[C@@H](O)CC(O)=O quant~

7 HMDB0000012 Deoxyuridine C9H12N2O5 228.

OC[C@H]1O[C@H](C~ quant~

8 HMDB0000014 Deoxycytidine C9H13N3O4 227.

NC1=NC(=O)N(C=C1~ quant~

9 HMDB0000015 Cortexolone C21H30O4 346.

[H][C@@]12CC[C@]~ quant~

10 HMDB0000017 4-Pyridoxic acid C8H9NO4 183.

CC1=NC=C(CO)C(C(~ quant~

i 4,682 more rows

The first observable difference between a tibble and a
data.frame is the print(). In addition to limiting the default
output to 10 rows, print() gives extra data about the shape,
and column types. In a tibble, variables (columns) still have
names, but rows (observations) do not.
The dplyr package provides all the subsetting and
manipulation functions needed to work with a tibble.
Idiomatic tidyverse programming using tibble generally
avoids the [] selection operator but like many idioms, this
convention is often ignored and many programs move
between tibbles and data.frames without strict adherence to
tidyverse conventions. This blending of styles allows
flexibility, as tibble objects are compatible with base R data
frame operations, but it can sometimes lead to confusion or
unexpected behavior when functions treat tibble objects
differently from traditional data frames.
To perform the selection of the first column as a vector the
pull() function is used with the column number:

head(pull(hmdb, 1))

[1] "HMDB0000001" "HMDB0000002" "HMDB0000005"

"HMDB0000008" "HMDB0000010"

[6] "HMDB0000011"

The same output can be obtained using the variable name:

head(pull(hmdb, accession))

To extract the first column as a tibble, the dplyr::select()
function is used:

dplyr::select(hmdb, exact_mw)

A tibble: 4,692 x 1

exact_mw

<dbl>

1 169.

2 74.1

3 102.

4 104.

5 300.

6 104.

7 228.

8 227.

9 346.

10 183.

i 4,682 more rows

The dplyr package tries to make what actions and return
values clear by using functions with descriptive names rather
than depending on syntax.
A good example of how the tidyverse approach makes code
more understandable is the dplyr::filter() function, which
is much easier to read than the Base R example given above.

dplyr::filter(hmdb, formula == "C4H8O3")

A tibble: 7 x 6

accession name formula

exact_mw smiles status

<chr> <chr> <chr>

<dbl> <chr> <chr>

1 HMDB0000008 2-Hydroxybutyric acid C4H8O3

104. CC[C@H](O)C(~ quant~

2 HMDB0000011 3-Hydroxybutyric acid C4H8O3

104. C[C@@H](O)CC~ quant~

3 HMDB0000023 (S)-3-Hydroxyisobutyric acid C4H8O3

104. C[C@@H](CO)C~ quant~

4 HMDB0000336 (R)-3-Hydroxyisobutyric acid C4H8O3

104. C[C@H](CO)C(~ quant~

5 HMDB0000442 (S)-3-Hydroxybutyric acid C4H8O3

104. C[C@H](O)CC(~ quant~

6 HMDB0000710 4-Hydroxybutyric acid C4H8O3

104. OCCCC(O)=O quant~

7 HMDB0000729 alpha-Hydroxyisobutyric acid C4H8O3

104. CC(C)(O)C(O)~ quant~

You can find many more details on the dplyr package in R For

Data Science [30, 31].
The as.tibble() function is very helpful when moving data
from application-specific functions that primarily use base R
types. When reading data from files the functions in the readr
package from the tidyverse return a tibble. For example,
using the read_csv() function:

hmdb <-

read_csv(file.path("data","hmdb_urine_metabolites.csv")

)

Rows: 4692 Columns: 6

-- Column specification -------------------------------

Delimiter: ","

chr (5): accession, name, formula, smiles, status

dbl (1): exact_mw

##

i Use `spec()` to retrieve the full column

specification for this data.

i Specify the column types or set `show_col_types =

FALSE` to quiet this message.

The read_csv() function shows that there were 4692 rows
and six columns. It also shows the delimiter symbol and the
guessed column specification so you can check to ensure the
function reads data the way you expected. If read_csv()
guessed the wrong column type, you must provide the actual
specifications using the col_types argument. Both read.csv()
and read_csv() import all string (character) columns as just
strings by default. In an earlier version of R, the default
import type for string columns was factor, meaning a
categorical variable where the string value was considered a
level. Over the years, the stringsAsFactors=TRUE default

caused so much confusion that the core R team changed it.
As of version 4.0, the default for read.csv() is
stringsAsFactors=FALSE so that strings are not assumed to be
factors by default.
In this example, status can be treated as a factor with three
levels found using unique():

unique(hmdb$status)

[1] "quantified" "detected" "expected"

Now the file can be read with the desired column
specification and the spec() function can be used to make
sure all the columns have the correct type, including cases
where strings are treated like factors:

hmdb <-

read_csv(file.path("data","hmdb_urine_metabolites.csv")

,

 col_types = cols(

 accession = readr::col_character(),

 name = readr::col_character(),

 formula = readr::col_character(),

 exact_mw = readr::col_double(),

 smiles = readr::col_character(),

 status = readr::col_factor(levels =

c("quantified",

"detected",

"expected")

),

)

)

readr::spec(hmdb)

cols(

accession = col_character(),

name = col_character(),

formula = col_character(),

exact_mw = col_double(),

smiles = col_character(),

status = col_factor(levels = c("quantified",

"detected",

 "expected"), ordered = FALSE, include_na = FALSE)

)

1.2.8 Functional Programming with Pipes

Notice how all of the functions in dplyr take the data object
as the first argument. The idea is to use this convention to
allow for method chaining. Many data analysis processes can
be stated clearly as a chain of transformations: selection,
subsetting, manipulation, etc. Functional programming
idioms represent chained operations naturally. The functional
programming approach makes expressing chained operations
easier. The tidyverse brought functional programming for
chained operations to R. The tidyverse uses pipes to link
sequential operations to make programs easier to read and
write. The tidyverse first introduced the pipe using the
symbol %>% implemented by the magrittr package. Functional
programming is so useful in data science and %>% chains
became such a common practice, that a native pipe operator
|> was added to the core R language in version 4.1. It’s
highly recommended that you use the native pipe in your
programs. You will still see many programs and examples
that use the %>% symbol. The two operators work differently,
so care must be taken when substituting the native pipe for
the magrittr pipe. I will exclusively use the native |> pipe in
this book.
The chained method approach to using the pull() function in
combination with the head() function makes it easier to see
the sequential nature of the operations, and eliminates the
need for :

hmdb |>

 pull(exact_mw) |>

 head()

[1] 169.0851 74.0844 102.0317 104.0473 300.1725

104.0473

Notice how each function (pull() and head()) is run with the
left-hand side of the |> operator’s return value as the first
argument.
Before performing any numerical calculations on exact_mw,
it’s usually a good idea to check to see if there are missing
values and decide what to do about them. Again the pipe
approach could be used here:

hmdb |>

 summarise(count = sum(is.na(exact_mw)))

A tibble: 1 x 1

count

<int>

1 1

One of the rows in the table has an exact_mw which is missing.
This will cause problems with calculating summary statistics,
so first, let’s see which one it is:

hmdb |>

 dplyr::filter(is.na(exact_mw))

A tibble: 1 x 6

accession name formula exact_mw

smiles status

<chr> <chr> <chr> <dbl> <chr>

<fct>

1 HMDB0001394 Heparin (C12H19NO19S3)nH2O NA

[H]O[C@H]1O[C@H](COS(O~ quant~

Since the chemical formula for Heparin allows for “n”
number of water molecules to be attached, the exact
molecular weight cannot be computed, so it is missing. This
row can be filtered out before computing statistics on the
table:

hmdb |>

 dplyr::filter(!is.na(exact_mw)) |>

 summarise(mean=mean(exact_mw))

A tibble: 1 x 1

mean

<dbl>

1 389.

The dplyr functions, like summarise(), return a tibble. Like
Base R, the tidyverse has a set of printing options for tibble.
The default is to print three significant digits. That is not
ideal for a variable like exact_mw. There are multiple ways to
control the default options, starting with changing the global
options for all printing. There is a help page that can be
found by typing the search command: ??tibble::numbers into
the R console. The help page for tibble::numbers describes
how to change the display options for numbers. For a specific
block of code, it is easy to convert the output of the
summarise() to a double-precision numeric type.

hmdb |>

 dplyr::filter(!is.na(exact_mw)) |>

 summarise(mean=mean(exact_mw)) |>

 as.double()

[1] 388.9683

Another example of a chained operation is to collect the
unique values of a variable and then use those for
summarization:

hmdb |>

 distinct(formula) |>

 summarise(count=n())

A tibble: 1 x 1

count

<int>

1 2973

This indicates that of the 4692 molecules in this dataset,
there are only 2973 distinct chemical formulas.

hmdb |>

 distinct(formula, .keep_all = TRUE) |>

 dplyr::filter(!is.na(exact_mw)) |>

 summarise(mean=mean(exact_mw)) |>

 as.double()

[1] 374.8294

In the example where we just counted the distinct rows, the
fact that distinct() drops all the other variables by default
was helpful since the resulting tibble only had the variable to
be counted. In this example, the option .keep_all was needed
to produce a table that kept all the columns that had distinct
values in the formula column.

1.2.9 Plotting with Base R and ggplot2

Plotting data is an essential part of statistical analysis. So,
naturally, R was built with a powerful and easy-to-use
plotting system. Like the flexibility of the original data.frame,

the ability to plot data easily is another reason people are
drawn to R as a data analysis language.
Before I start plotting, I want to address an issue with colors
in scientific visualization. Often, colors like red, green, and
blue are used for annotation and overlaying lines. These are
fine color choices for readers who can read a color version of
the plot and don’t have any problems with color distinction in
their vision. Unfortunately, there are many people affected by
color distinction issues. Using R it is easy to ensure that your
plots can be more readable for either base R or using ggplot2.
As of R 4.0.0, a new color palette was adopted to make the
default colors more accessible. The new palette follows the
recommendations of Okabe and Ito [32] and can seen with
the palette.colors() function.

palette.colors()

[1] "#000000" "#E69F00" "#56B4E9" "#009E73" "#F0E442"

"#0072B2" "#D55E00"

[8] "#CC79A7" "#999999"

To make these colors easier to use when specifying colors, I
put the color codes and shortened names into a data.frame
and used them via my own names:

pal<-as_tibble(t(palette.colors()), .name_repair =

"universal")

colnames(pal) <- c("black", "orange", "lightblue",

"green", "yellow", "blue",

 "darkorange", "red", "gray")

pal$yellow <- "#FDDA0D"

I kept the default colors with the exception of yellow, which I
changed to a slightly darker shade since the default can be
difficult for anyone to see on a white background.

A time-of-flight MS spectrum for serine collected in profile
mode is stored in the file serine-0649.csv and I’ll show how
to plot this spectrum using Base R and ggplot2.

s <- read_csv(file.path("data","serine-0649.csv"),

show_col_types=FALSE)

serine_mw = 106.0498696

plot(smz, sinten,

 type="b",

 xlim=c(106.0,106.1),

 ylim=c(0,60000),

 xlab="m/z",

 ylab="intensity",

 main="Serine Profile TOF Spectrum"

)

Monoisotopic mass of C3H7NO3 [M+H]+ is 106.0498696

add a vertical line to the plot at [M+H]+

abline(v=serine_mw, col=pal$red, lty=2, lwd=2)

The base plotting functions in R are based on a pencil and
paper model. In his groundbreaking book The Grammar of

Graphics [33], Wilkinson compares this to the chart

metaphor. A function is called to make a particular kind of
chart, and then editing functions are called to add or change
things on the chart to better convey your intent. The call to
the abline() function in Figure 1.3 is an example. The chart
metaphor, however, limits the user by providing a limited set
of chart types with an associated collection of editing
functions. This makes it easy for the package designer but
forces the data analyst to find the specific charts and edits to
get the plot to tell the desired story. The idea of a grammar of
graphics is to provide the analyst with a set of components
(words) and rules (grammar) to assemble complex graphical
objects much in the way languages are composed by creating

a set of reusable objects that can be combined in a variety of
ways, more sophisticated and more meaningful graphics can
be constructed in an iterative way.

Figure 1.3 Using base R plot() to show a time-of-flight

spectrum of serine (C3H7NO3) collected in profile

mode. A dashed line shows the monoisotopic mass of

[M+H]
+
.

The ggplot2 package, described in Wickham’s book ggplot2

[34], extends the use of reusable graphical objects by adding
the idea of layers. In ggplot2, layers are used to describe how
to render each observation in the data selected for the graph.

p <- ggplot(s, aes(mz, inten)) +

 geom_line() +

 geom_point() +

 geom_vline(xintercept = serine_mw,

 color=pal$red, linetype="dashed",

linewidth=1) +

 xlab("m/z") +

 ylab("intensity") +

 xlim(106.0,106.1) +

 ylim(0,60000) +

 ggtitle("Serine Profile TOF Spectrum")

print(p)

In ggplot2, the idea is to use the object-oriented nature of R
to construct a plot object using the + operator to combine
layers of graphical elements. The ggplot() function takes the
full data set, which must be a type of data.frame (remember
tibbles are a subclass of data.frame) as the first argument,
and then a mapping of data to visual properties (called
aesthetics) using the aes() function. In the ggplot example in
Figure 1.4, the tibble s is passed into ggplot() and the
variables mz and intensity are selected to be plotted by the
aes() function. Once the ggplot object has been created, the
first type of layer added is a line plot. Line plots are a type of
geom (geometry) layer. There are many types of geoms built
into ggplot2. In the example, plotting the data points over the
geom_line() is done by adding a geom_points() layer to the
plot object. Another layer added is the vertical line
geom_vline(). You can add as many geom layers as you need.

Figure 1.4 Using ggplot2 to show a time-of-flight

spectrum of serine.

Next, in the example, the axes are customized with layers
that override the defaults generated by the original ggplot()
function. The xlab(), ylab(), xlim(), and ylim() are all used
to specify the details for the axes. Notice that in this code,
you could change any of the layers to change the plot without
changing how the axes were specified. Finally, a ggtitle
layer is added. The plot in Figure 1.4 follows the default
theme for ggplot2. The last layer that we will add is a theme
layer which changes the look of the plot to give Figure 1.5.

Figure 1.5 Using ggplot2 with classic theme to show a

time-of-flight spectrum of serine.

p <- p + theme_classic()

print(p)

Throughout this book, you will find more examples of how to
generate publication-quality graphics from mass
spectrometry and related data. In addition, there are many
practical resources for base R graphics, like Chang’s R
Graphics Cookbook [35] and Data Visualization by Healy [36],
which uses ggplot2.

1.3 Bioconductor

Bioconductor is a package repository supported by a very
active community since 2001 [37].

The mission of the Bioconductor project is to develop,

support, and disseminate free open-source software that

facilitates rigorous and reproducible analysis of data from

current and emerging biological assays. We are dedicated

to building a diverse, collaborative, and welcoming

community of developers and data scientists.

Bioconductor is a tightly integrated collection of packages
with a narrower audience than CRAN. Like CRAN, it is a way
for the community to share packages but has a stricter
review process and uses a continuous integration and
deployment approach. The Bioconductor project builds and
tests over 2100+ packages continuously [5]. Mass
spectrometry is one of many technologies used in biological
research, so there are a significant number of packages
available to work with mass spec data. There are more than
100 mass spectrometry-related packages in Bioconductor.
Many are helpful for any mass spectrometry experiment,
while others incorporate mass spectrometry data into
workflows with other kinds of -omics experiments.

1.3.1 Essential Packages

Because Bioconductor follows a different release schedule
than R and CRAN, the team has created an alternative
installation process mentioned in the Preface. Bioconductor
uses the BiocManager package install() function to install
packages. Bioconductor uses a core set of classes
automatically installed when any of the Bioconductor
packages is needed. While not required, Bioconductor
encourages developers to use R’s S4 object paradigm in R
[38]. The object-oriented system package uses usually won’t

affect how you use the functions and data in Bioconductor
packages. Still, S4 is a more formal system of classes and
methods, and examples will generally use accessor functions
rather than extracting data directly from objects. Using S4
means that sometimes data will not be easy to browse in R
Studio. However, this book shows how to use Bioconductor
and other application-specific systems by moving results into
a tidy format to use the tidyverse and all of its packages
more easily.

1.3.2 Mass Spectrometry

The Bioconductor project contains over 100 packages
dedicated to analyzing mass spectrometry data using R. The
approach I am recommending in this book is to use
Bioconductor packages to read and process mass
spectrometry data and then move from the application-
specific data structures to the tidyverse and standard R
programming. In some cases, you will be able to find entire
workflows in Bioconductor that can efficiently complete your
analysis, especially if proteomics or other biological
applications are your primary use of mass spectrometry data.
While many mass spectrometry applications are not directly
related to biological research, there are valuable components
found in Bioconductor that can save time and effort. A prime
example is using the Bioconductor packages for reading
various mass spectrometry data formats. To read raw data,
packages such as mzR or MSnbase will cover all but the most
specialized applications. Depending on your needs, other
mass spectrometry packages may also be helpful. Since the
Bioconductor project is so well maintained, it will always be a
good idea to check the package descriptions to see if you can
use one or more directly. The Bioconductor project is so large
that it provides a package browser called BiocViews from the
main project page
(https://www.bioconductor.org/packages/release/BiocViews.

https://www.bioconductor.org/packages/release/BiocViews.html

html) [39]. In addition to software packages for mass
spectrometry, some data packages contain data you can use
to test analysis approaches or new applications. Throughout
this book, I will show the use of both the software and data
packages in Bioconductor.

1.4 Reproducible Data Analysis

The objective of reproducible data analysis is to allow others
to see and repeat the computational analysis used to arrive at
a finding [40]. Minimally, this means providing access to data
sets and code. The goal is to increase the reliability of
published results, either within your organization or in the
literature. For the larger community, reproducibility often
starts with ensuring data is accessible and others can
reproduce the analysis method. In descriptions of methods
translated into natural language, it is too easy to leave out
some details needed to make an analysis work. Ultimately
button clicks inside user interface programs are not easily
reproduced by others, even if they have your data and access
to the program. Reports rarely describe a user interface
gesture such as dragging, dropping, and clicking, making
some analysis steps easy to miss. Scripts have statements for
every step in the analysis, so no action in a computation is
left undescribed. This completeness has led to a preference
for using programs to perform reproducible research.
Further, anyone can run the program and reanalyze the data
when the analyst writes the program using an open-source
system. Programs written in closed-source software analysis
tools create a barrier for anyone who does not have access to
the software. The open nature of the R system has made it a
good choice for improving the reproducibility of analysis.
R is constantly changing. For someone to reproduce your
past results, they will have to understand the environment
you used. R has a function called sessionInfo(), which

https://www.bioconductor.org/packages/release/BiocViews.html

displays the R version and all the packages present during
the analysis. Providing the session information allows
everyone to see what versions of packages are needed and
which ones might be masking functions from base R or other
packages to understand the system behavior. If you used the
latest package for a particular analysis, by the time someone
needs to reanalyze your data, it is possible that the package
was updated in the meantime. Even if the dependencies
cannot be exactly reconstructed, knowing that you used an
older package will help with future analysis.
The output of sessionInfo() looks like this:

sessionInfo()

R version 4.4.1 (2024-06-14)

Platform: aarch64-apple-darwin20

Running under: macOS Sonoma 14.6.1

##

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.4-

arm64/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.4-

arm64/Resources/lib/libRlapack.dylib;

 LAPACK version 3.12.0

##

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-

8/en_US.UTF-8

##

time zone: America/Indiana/Indianapolis

tzcode source: internal

##

attached base packages:

[1] stats graphics grDevices utils datasets

methods base

##

other attached packages:

[1] lubridate_1.9.3 forcats_1.0.0

stringr_1.5.1

[4] dplyr_1.1.4 purrr_1.0.2

readr_2.1.5

[7] tidyr_1.3.1 tibble_3.2.1

ggplot2_3.5.1

[10] tidyverse_2.0.0 knitr_1.48

BiocParallel_1.38.0

##

loaded via a namespace (and not attached):

[1] utf8_1.2.4 generics_0.1.3 stringi_1.8.4

hms_1.1.3

[5] digest_0.6.36 magrittr_2.0.3

evaluate_0.24.0 grid_4.4.1

[9] timechange_0.3.0 bookdown_0.40 fastmap_1.2.0

tinytex_0.51

[13] fansi_1.0.6 scales_1.3.0 codetools_0.2-

20 cli_3.6.3

[17] rlang_1.1.4 crayon_1.5.3 bit64_4.0.5

munsell_0.5.1

[21] withr_3.0.0 yaml_2.3.9 tools_4.4.1

parallel_4.4.1

[25] tzdb_0.4.0 colorspace_2.1-0 vctrs_0.6.5

R6_2.5.1

[29] lifecycle_1.0.4 bit_4.0.5 vroom_1.6.5

pkgconfig_2.0.3

[33] pillar_1.9.0 gtable_0.3.5 glue_1.7.0

xfun_0.45

[37] tidyselect_1.2.1 rstudioapi_0.16.0 farver_2.1.2

htmltools_0.5.8.1

[41] rmarkdown_2.27 labeling_0.4.3 compiler_4.4.1

I have not used many packages at this point, so the list is
somewhat shorter than it will be at the end of a typical
analysis project. It is best practice to run sessionInfo() at the
end of your work to capture everything used.

1.4.1 Project and File Organization

Another issue that can occur in reproducing analysis is
hardware and operating specifics. In various operating
systems, directory names and file paths have different

requirements. When working in R, setting the working
directory to the location of your code allows you to use
system-independent path construction using the file.path()
function. Using file.path() creates a path specific to your
operating system.
Another important consideration is the organization of
project files and data. Today the primary environment is a
local computer or server running an operating system that
uses files and directory structures. There is no consensus on
a specific directory structure for project management, but a
central guiding principle is to keep your work organized.
Roughly, it should be clear from looking at the contents of a
directory where everything is. Having one directory for data
and another for code is a good start.
As computing platforms evolve, the methods for providing
access to data and programming environments will change
drastically. With increasing demands for more storage and
higher-performance computing with more complex analysis
pipelines, virtual machines (VM) are becoming as important
as the “desktop computer” environment. There are
advantages to using a VM in a cloud computing environment,
especially for large-scale projects and collaborations. First,
the construction and configuration of high-complexity
analysis pipelines is a separate skill from data analysis.
Building a high-performance VM system is more akin to
system administration than data science. Second, using a
virtual machine allows complete pipelines to be assembled
and made available to anyone with access to a computing
environment that can run the VM. The use of cloud
computing and the VM approach is outside the scope of this
book, but it is an active area that includes the R ecosystem.
See the AnVIL project [41] for an example.

1.4.2 RMarkdown and Literate Programming

Most research reports are static documents such as slide
presentations, posters, journal manuscripts, and technical
reports. One way to make research findings easier to
reproduce is to create a dynamic document that incorporates
the analysis, graphics, and text in a single document. Donald
Knuth coined the term literate programming [22] to describe
writing a natural language document that includes
executable chunks of code that can be woven into a complete
and understandable final document. Initially described in the
1980s, the notebook supported literate programming with the
concept of cells which could contain natural language, code,
or plots. Notebook environments are now a popular tool in
data science. R supports literate programming primarily
through the knitr package. R uses knitr to integrate code
with text-based writing systems such as LaTex, HTML,
Markdown, and others [42].
One of the tenets of reproducible research is that documents
should be created and maintained in clear text formats. There
are many methods for moving between text and presentation.
HTML is simple text that can be written in a code editor and
rendered by a browser or other program into a highly
polished document. LaTex is another way to generate high-
quality technical documents. LaTex documents are plain text
files that follow a specific syntax that a program can typeset
and render automatically. Another approach to document
creation is to use a file format called Markdown [43].
Markdown is more limited than other document creation
formats but, in exchange, it is much easier to write. Like
HTML and LaTex, Markdown is a program that can convert
the text into a high-quality final document. There are many
references for how to use HTML and LaTex to create
documents, and using these directly for reproducible
research is outside the scope of this book. The approach
recommended here is to use Markdown as the primary tool

for expressing the format of a document. Using knitr,
however, allows RMarkdown documents to include snippets
of LaTex or HTML, depending on the target for the final
document. Also, you can add bits of LaTex or HTML to the
RMarkdown text to achieve a specific presentation effect.
Thanks to the power of knitr, all of these can be mixed and
matched in a single RMarkdown document.
Some simple examples of the Markdown syntax used in
RMarkdown:

Header 1

Header 2

italics

bold

inline equation: $C = 2*\pi*r$

Which renders as:

Header 1

Header 2

italics

bold

inline equation:

1.5 Summary

In this chapter I’ve given you an introduction to the ideas
behind using the tidyverse as the main way to organize data

from specialized packages used for analyzing mass
spectrometry data. In the next chapter, I will walk through a
more detailed example using more complex mass
spectrometry data to show how to use the tidyverse and
Bioconductor together.

Chapter 2

Introduction to Mass Spectrometry Data Analysis

This chapter will show an example of analyzing data from a mass spectrometer. In later
chapters, I will discuss mass spectrometers in more detail and dive deeper into the many
different mass spectrometer designs and the type of data they produce. The data analysis
methods will follow the data’s complexity level, starting relatively simple and moving to
more advanced analysis methods as needed.

2.1 An Example of Mass Spectrometry Data Analysis

To get oriented using the tidyverse and Bioconductor, the rest of this chapter will show a
simple example of loading, processing, and plotting a mass spectrometry data set from the
MassIVE repository hosted by the Center for Computation Mass Spectrometry, at the
University of California, San Diego [44].
First, download the data set MSV000081318 from: ftp://massive.ucsd.edu/MSV000081318/.
This dataset contains 78 files and is 4.37 GB in size. The data comes from a high-
resolution liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis of
a sea sponge, Theonella swinhoei [45].

2.1.1 Basic Mass Spectral Data

All eXtensible markup language (XML)-based mass spectrometry formats are text files
that any text editor can open. Computers can store mass spectrometry data in many
different file formats. Each format has a function and some strengths and weaknesses. I
will describe additional file formats as I cover the applications where they are most
applicable. In general, even though these files are human-readable, you won’t need to
examine them in their raw format. However, before you start working with these files, it is
instructional to peek inside one and see what you are dealing with and why you want
specialized tools for working with them. Below are the top few lines of the data file
2017_04_08_TSW_Sponge.mzXML:

<?xml version="1.0" encoding="ISO-8859-1"?>

<mzXML

 xmlns="http://sashimi.sourceforge.net/schema_revision/mzXML_3.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://sashimi.sourceforge.net/schema_revision/mzXML_3.0

 http://sashimi.sourceforge.net/schema_revision/mzXML_3.0

 /mzXML_idx_3.0.xsd">

 <msRun scanCount="5703" startTime="PT60.14S" endTime="PT1320.5S">

 <parentFile

 fileName="file://9020-DDDXS22/C/Xcalibur/data/eriche/

 Theonellamides_Israel_3/2017_04_08_TSW_Sponge.raw"

 fileType="RAWData"

 fileSha1="4f6120724c2ca4a15e5eeddadea3404abfba4a2f"/>

 <msInstrument>

 <msManufacturer category="msManufacturer" value="Thermo Finnigan"/>

 <msModel category="msModel" value="unknown"/>

 <msIonisation category="msIonisation" value="ESI"/>

 <msMassAnalyzer category="msMassAnalyzer" value="FTMS"/>

 <msDetector category="msDetector" value="unknown"/>

 <software type="acquisition" name="Xcalibur"

 version="2.5-204201/2.5.0.2042"/>

 </msInstrument>

 <dataProcessing centroided="1">

 <software type="conversion" name="ReAdW"

 version="4.0.2(build Jul 1 2008 14:23:37)"/>

 </dataProcessing>

 <scan num="1" msLevel="1" peaksCount="75" polarity="+" scanType="Full"

 filterLine="FTMS + p ESI Full ms [600.00-2000.00]"

 retentionTime="PT60.14S" lowMz="611.187" highMz="1853.32"

 basePeakMz="831.448" basePeakIntensity="6739.2"

 totIonCurrent="96513.3">

 <peaks precision="32" byteOrder="network" pairOrder="m/z-int">

 RBjL9kQvdwVEGQvURBjL6UQZnwFFKlq6RBnfOEQfr7FEGtweRajAA0Qa7uREEGFM

 RBr00EPlR9hEGxxhRICOS0QbMIBEEdhkRB7ad0TfJhlEI01BRBSRH0QjWkhEDasz

 RCSgmkUfxuhEJODlRFNid0Ql3atFHtGZRCYd+0R/kVJEKCZuRCEf10QojV5E9nQW

 RCkgnkQ6pSZEKn28RFEMrkQrTPREJAjgRCtra0QtsqVEK60nRBVGokQtL1dEG7gK

 RC1qqER1QWVEL6JSRSUUVEQv4ntESNSdRDAmjkQ1he9EMN9nRQUldEQxH5VE+CHY

 RDFjzUR8EUVEMaP6RB0trUQ03d9EJbNyRDpBhUQSjeVEOmm5RC7uU0Q6pCNEXIUW

 RDvhGkVVsABEPCExREfdUEQ8c9JENTH4RECBbUQdfk9ERuK3RFnjzERI2pNE9Ahq

 RExbnUUN+xNETfCLRWg5TERP3LJF0pmXRFAc9EUIUXtEUFsdRDJLQERQXWJE/ZmZ

 RFCdxERcCKBEU129RFXcM0RV5oxEebvHRFhTq0RvBT1EWHOpRExN1URYk5REY8kR

 RFizh0UaZThEWNOoRIpdR0RZX1BEWkWuRFqT3EQ8/EBEWssERQRt2URa091EX34D

 RFrz1URkXbtEW91vRCzkHkRdUwVFAT19RF2TVERLHf1EivUyRGAkGUSWzmxEXpo/

 RJkx2kQ8zzZEmTPQRFMqvUSdJ59EJwOjRKGi9ERKJN1EpfGlRDguZ0Sn6jVEUNF8

 RMLiQ0SAJKtE41IkRGWRPETnqiFETbIj

 </peaks>

 </scan>

XML elements are enclosed in <> brackets, and the file begins with the standard XML
header giving the version and encoding. The next element shows that the file follows the
mzXML format described by the mzXML schema mzXML_idx_3.0.xsd. There are multiple
versions of mzXML; to read it correctly, the libraries need to know the format and version.
The next element describes the run, providing metadata such as scan count and start/end
time stamps as attributes. More metadata is supplied in the <parentFile> and
<msInstrument> elements. The first piece of raw data is in the <scan> element. Here details
of the first scan are given along with an element called <peaks>. The peaks element is the
first place where the XML file becomes unreadable by humans. The binary-to-text
conversion called base64 encoding is used to represent the raw data. In the XML file, the

binary arrays holding the m/z and intensity values are converted into printable text. The
precision and byte order are needed to decode the text in an array, which in this case, will
be 75 pairs of 32-bit floating point numbers.
From the <scan> element, you can also see that the data are from an MS level 1 spectrum
(msLevel="1"). Each scan has a number starting at 1: num=1. Later in the run, there are MS
level 2 spectra (msLevel="2"). Many mass spectrometry measurements combine MS levels
with different MS scans and can also include chromatograms. This variety of data types
combined with base64 encoding means that while general-purpose XML reading libraries
will work to parse the file, the special-purpose packages in Bioconductor, specifically
MSnbase, make working with XML data more manageable.
I’ll begin by using low-level file reading functions in the mzR package to read the file and
extract some metadata. In the preface, I installed the MSnbase package, which installs the
mzR package as a dependency. The mzR package can be loaded independently like any
other with the library() function.

library(Rcpp)

library(mzR)

The mzR package provides a virtual class, which is normally created using the openMSfile()
function. This is the lowest level function you will need to read XML raw data files.

ms_file <- openMSfile(file.path("data","2017_04_08_TSW_Sponge.mzXML"))

The openMSfile() function opens the file and loads the contents into memory. In the
second part of this example, I will show a way to access the data directly from the disk
using the higher-level functions in MSnbase. The variable ms_file is an instance of an mzR
object, with accessor functions used to extract metadata and data from the XML file.
First, to get information on the instrument, the instrumentInfo() function can be used:

inst_info <- instrumentInfo(ms_file)

This assignment produces a list called inst_info:

print(inst_info)

$manufacturer

[1] "Thermo Finnigan"

##

$model

[1] "unknown"

##

$ionisation

[1] "electrospray ionization"

##

$analyzer

[1] "fourier transform ion cyclotron resonance mass spectrometer"

##

$detector

[1] "unknown"

##

$software

[1] "Xcalibur software 2.5-204201/2.5.0.2042"

##

$sample

[1] ""

##

$source

[1] ""

Next, information on the spectra in the file can be obtained using the run_info() function:

run_info <- runInfo(ms_file)

print(run_info)

$scanCount

[1] 5703

##

$lowMz

[1] 50.0135

##

$highMz

[1] 3526.62

##

$dStartTime

[1] 60.14

##

$dEndTime

[1] 1320.5

##

$msLevels

[1] 1 2

##

$startTimeStamp

[1] NA

From these two lists, you can tell that this file is from a Thermo Oribitrap operating in
FTMS mode, that the acquisition was collected from 60.14 seconds and ended at 1320.5
seconds, and that it contains both mass spectrometry (MS) and tandem mass
spectrometry (MS/MS) data. Knowing the number of levels of MS performed is required
to select how to examine the data further.

2.1.2 Exploring and Plotting

To begin plotting data, it’s time to move up to the higher-level methods in MSnbase. First,
I’ll make a standard summary plot: the total ion chromatogram (TIC) for the MS level 1
data.
When the MSnbase package is loaded, it will print several messages to the console
explaining what other packages MSnbase loaded as dependencies and what functions it
masks from previously loaded packages. I have omitted the message output to save space.
It might also vary with different versions of MSnbase in the future.

library(MSnbase)

Next, read the data file, using the readMSData() function:

ms_data <- readMSData(file.path("data","2017_04_08_TSW_Sponge.mzXML"),

 mode = "onDisk")

The readMSData() function takes the argument mode, which allows data files to either be
loaded into memory (the default) mode = "inMemory" or accessed directly from disk mode =
"onDisk". Depending on file size and memory available to R on your computer, you may
want to experiment with both modes.
The object created by readMSData() is of the class MSnExp for the inMemory mode and the
class OnDiskMSnExp for the onDisk mode. Many functions operate on MSnExp and
OnDiskMSnExp objects, which help in computing a TIC. A TIC is almost always computed
from MS level 1 spectra, which you can select with the filterMsLevel() function.

ms1_data <- filterMsLevel(ms_data, msLevel = 1)

Next, the chromatogram() function turns a collection of spectra into a TIC. The data in the
example file were collected using a data-dependent acquisition (DDA) mode. In DDA, the
peaks in an MS level 1 spectrum trigger MS level 2 acquisitions based on their m/z values
and intensities. The aggregation function max() finds the highest intensity peak in each
spectrum and uses it as the value for the chromatogram intensity at that time. Using max()
creates a base peak chromatogram (BPC). In other situations, the TIC is more useful. To
compute the TIC, set the aggregation function to sum(). Summing all peak intensities in a
single spectrum creates the chromatogram intensity for that time point.

mz_tic <- chromatogram(ms1_data, aggregationFun = "sum")

Plot the TIC using the plot() method from R’s base graphics package.

plot(mz_tic)

Figure 2.1 shows the TIC from the MS level 1 spectra in the example file.

Figure 2.1 TIC plotted using R’s base graphics system.

2.2 Using the Tidyverse in Mass Spectrometry

In the example code that produced Figure 2.1, each step created a variable for the
following function regardless of any future need for that variable. Creating intermediate
variables makes the flow of the process harder to read and forces you to come up with
names for variables along the way. In addition, creating many intermediate variables
throughout a program can be a source of confusion and make it difficult to understand a
program. An example above is the variable ms1_data. It is only needed to pass into the
chromatogram() function and contains no extra information not available in the ms_data
variable.
A simple example of chained operations for the TIC plot, using the tidyverse plotting
system ggplot2, is shown below:

ms_data <- readMSData(file.path("data","2017_04_08_TSW_Sponge.mzXML"),

 mode = "onDisk")

ms1_tic <- filterMsLevel(ms_data, msLevel = 1) |>

 chromatogram(aggregationFun = "sum")

p_tic <- ms1_tic[1] |>

 (function(x) {tibble(MSnbase::rtime(x),

 MSnbase::intensity(x))})() |>

 setNames(c('rt', 'inten')) |>

 ggplot(aes(x=rt, y=inten)) +

 geom_line()

print(p_tic)

This code example uses several elements of the tidyverse. After loading the data using the
readMSData() function as before, the next assignment uses a pipe to chain the output of a
function filterMsLevel(), which selects the MS level 1 spectra, to the function
chromatogram(), which then returns a TIC assigned to ms1_tic. You have no use for the
filtered spectra except for passing them to the next step in the TIC creation process, so
you don’t need to name them and keep them as was done in the previous example. The |>
(pipe) symbol for function chaining, sets the first argument of the following function in the
program to the output of the previous one. In other words, it passed the filtered spectra
into the first argument of chromatogram(). In the next example, I’ll show how to add those
values to the annotations of the plot, similar to how they were displayed using the base
graphics plot() function.
Using pipes to chain steps in a process can make code easier to read. However, there are
a few caveats. Pipes can make code harder to debug since there are no intermediate
variables. It’s considered best practice to keep chains to only a few steps and store any
useful intermediate results. Creating the ms_data variable and the ms1_tic variable for
later use made sense in this example.
Since the goal is to plot the chromatogram, you will ultimately need to pass a data.frame
into the plotting function ggplot(). In this example, I used the tidyverse version of the
data.frame: the tibble. The tibble is an updated version of the base class data.frame.
Significant improvements make a tibble much easier to use than a data.frame, especially
when working with other tidyverse packages. I will go into more detail in the next
chapter, but one advantage is that the resulting tibble in the example is almost ten times
smaller than the equivalent data.frame, which is likely to make further processing faster
and use less memory.
In the code example, the line that creates the tibble and passes it into ggplot() is
enclosed in an anonymous function. This is one of the differences between the %>% pipe
and the native pipe. The native pipe expects the next item in the chain to be a function.
Using an anonymous function allows you to control the |> operator where to insert the

output of the previous function. The %>% operator used metaprogramming to implement
the piping operation and inserted the code needed for the operation to work. With the
native pipe, the next item can be either a named or anonymous function. Without the
notation (function(x) {...})(), the pipe would assume the next function is tibble() and
pass the output of ms1_tic[1] as the first argument. This is not the behavior I need. To
make a plot of the TIC, I need to make the tibble out of two vectors: the retention time (x),
obtained using the rtime() function, and the ion intensity (y), obtained using the
intensity() function. In R, the unnamed result created by the pipe gets assigned to the x
symbol by the function(x){} statement. There is also a shortcut to reduce keystrokes for
anonymous functions: \(x). For most examples, I will spell out the word function()
rather than use the \() just to be clear, but some examples and programs you find will use
the shortcut. Even further, it is common to shortcut the variable x in function(x) with the
. symbol so that the anonymous calls can be written as function(.) or \(.). In the
example, the output of ms1_tic[1] are passed into rtime() and intensity(), so the x
variable inserts the first element of ms1_tic into both functions. Again, I could have used
function(.) {} and then avoided having to name the incoming variable, which has no
semantic meaning in this context, so the name is often something random like x. This is
the biggest difference between the native pipe |> and the older magrittr pipe %>%. The
native pipe requires the creation of a function to direct where the pipe sends the input
into the next step in the chain. To finish, I want to specify the plot’s x- and y-axis names,
so I called the setNames() function, which gives names to the first and second columns in
the tibble and then pipes the final result into ggplot().
In this simple example, which produces Figure 2.2, the tibble containing the retention
time (rt) and the intensity (inten) becomes the first argument to ggplot(). The key
element of a graphic is what data to plot. For example, for a standard x –y plot, the x-and
y-axis data are specified using the column names. In the Grammar of Graphics used by
ggplot2, this is called the aesthetic (aes). To get a plot of a particular type, ggplot() uses
the notion of adding things to the core graph. The simplest thing to add is the plot type, in
this case, a line plot, which is added using the + symbol and specifying the geometry of
the plot as a geom_line(). The ggplot2 package is powerful and complex. In the next
chapter, I will give more examples of how ggplot() can be used with mass spectrometry
data. For now, I’d like to make one additional TIC plot to give a flavor of how much
control ggplot() provides over the data display.

Figure 2.2 TIC plotted using ggplot2.

2.2.1 Customizing Plots Using ggplot2

Notice in Figure 2.1 that the title, the labels for the x- and y-axis, the tick marks, and even
the background were all generated automatically because the MChromatograms class
implements a custom plot() function using the base R graphics package. In Figure 2.2,
some default behavior was provided, such as the background and reference lines based on
the default tick mark spacing, but the axis labels, colors, and other attributes of the plot
were not specialized to the content of the graphic. In this section, I will further customize
the TIC plot to show how to add layers to a ggplot2 graphic.
I have a personal preference for how I like to see mass spectra and chromatogram
intensity values plotted. You might want to format your y-axis differently, or it may not
matter if you are just doing something quick for exploration. Throughout this book I use
the scale_y_continuous() function and pass into it a custom function called inten_label()
for labeling the y-axis on many plots.
The function inten_label() uses the function parse() to generate each element in the
array of y-axis labels. The one complicating factor in this method is that the equation used
to convert the break values on the y-axis into scientific notation produces a nonsensical
result for 0 intensity. To replace that value with the actual string “0,” I used the grepl()
function to look for NaN, which stands for not a number, which is the result when
break_value is 0 in the line: 0/10^log10(0). I use the base::grepl() function, which, as I
pointed out earlier, is needed because I want the base version of grepl(). However, the
Bioconductor package MSnbase loads a package called BiocGenerics, which provides a
different version of grepl(). It’s important to use the exact function you want, even when

it’s masked. In many cases, masking will not matter, but to simplify debugging, you should
ensure you know which packages provide which functions.

inten_label <- function(break_value) {

 s <- sprintf(paste0("%.2f*x*10^%f"),

 break_value / 10^floor(log10(abs(break_value))),

 floor(log10(abs(break_value))))

 if (base::grepl("NaN", s[1]))

 s[1] = "0"

 return(parse(text=s))

}

Now, I will plot a more customized version of the TIC, which applies the specific kind of y-
axis I want using scale_y_continuous(), as well as the background by adding the
theme_classic() layer and a custom title and subtitle.

mz_range <- mz(ms1_tic)

p_clean_tic <- ms1_tic[1] |>

 (function(x) {tibble(MSnbase::rtime(x),

 MSnbase::intensity(x))})() |>

 setNames(c('rt', 'inten')) |>

 ggplot(aes(x=rt, y=inten)) +

 geom_line() +

 scale_y_continuous(labels = inten_label) +

 xlab("Retention Time (s)") +

 ylab("Intensity (counts)") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "Base Peak Chromatogram - 2017_04_08_TSW_Sponge.mzXML",

 subtitle = sprintf("MS Level 1: mz %.2f - %.2f",

 mz_range[1], mz_range[2]))

print(p_clean_tic)

For Figure 2.3, I wanted to add the mass range information to the subtitle. You can access
a spectrum’s starting and ending m/z values with the mz() function. In this example, I
stored the result of mz() as mz_range, which has two elements, the lower m/z in element 1
and the upper m/z in element 2. I used the sprintf() function to make a string and control
the formatting of the numbers in the subtitle, and finally, I added meaningful axis labels
using the xlab() and ylab() layers.

Figure 2.3 Customized TIC using the layering features of ggplot.

2.2.2 Tidy Mass Spectrometry Data

One of the central ideas expressed in tidyverse packages is the use of tables in a
structured way – similar to the way tables are used in relational databases [46]. The dplyr
package contains many functions to make working with data more manageable, with the
notion that the first step in data analysis is to tidy up. To give a brief example of the main
ideas, you can look at the example dataset used to create the TIC plot, dig into its
structure more, and then wrangle some of the data into a form that is easier to use.
The ms_data variable holds all the run information created by readMSData(). I can use the
print() function to display some of the metadata about the dataset:

print(ms_data)

MSn experiment data ("OnDiskMSnExp")

Object size in memory: 2.12 Mb

- - - Spectra data - - -

MS level(s): 1 2

Number of spectra: 5703

MSn retention times: 1:00 - 22:00 minutes

- - - Processing information - - -

Data loaded [Thu Aug 29 16:42:39 2024]

MSnbase version: 2.30.1

- - - Meta data - - -

phenoData

rowNames: 2017_04_08_TSW_Sponge.mzXML

varLabels: sampleNames

varMetadata: labelDescription

Loaded from:

2017_04_08_TSW_Sponge.mzXML

protocolData: none

featureData

featureNames: F1.S0001 F1.S0002 ... F1.S5703 (5703 total)

fvarLabels: fileIdx spIdx ... spectrum (35 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

The output has a section - - - Spectra data - - - that shows that this dataset has both
MS level 1 and MS level 2 data. The following example will separate the two levels and
determine their relationship.

ms1_data <- filterMsLevel(ms_data, msLevel = 1)

ms2_data <- filterMsLevel(ms_data, msLevel = 2)

The MSnExp accessor function fvarLabels() shows the variables that are available from the
MS level 2 scans:

fvarLabels(ms2_data)

[1] "fileIdx" "spIdx"

[3] "smoothed" "seqNum"

[5] "acquisitionNum" "msLevel"

[7] "polarity" "originalPeaksCount"

[9] "totIonCurrent" "retentionTime"

[11] "basePeakMZ" "basePeakIntensity"

[13] "collisionEnergy" "ionisationEnergy"

[15] "lowMZ" "highMZ"

[17] "precursorScanNum" "precursorMZ"

[19] "precursorCharge" "precursorIntensity"

[21] "mergedScan" "mergedResultScanNum"

[23] "mergedResultStartScanNum" "mergedResultEndScanNum"

[25] "injectionTime" "filterString"

[27] "spectrumId" "centroided"

[29] "ionMobilityDriftTime" "isolationWindowTargetMZ"

[31] "isolationWindowLowerOffset" "isolationWindowUpperOffset"

[33] "scanWindowLowerLimit" "scanWindowUpperLimit"

[35] "spectrum"

What is listed are 35 elements that are available for each MS level 2 scan. Of interest is
the precursorScanNum, which indicates which scan in the MS level 1 data triggered the MS
level 2 scan. I can also get the precursorMZ, the particular peak in the MS level 1 that the
instrument fragmented to get the MS level 2 spectra.

fData(ms2_data)["precursorScanNum"] |>

 head(15)

precursorScanNum

F1.S0251 250

F1.S0252 250

F1.S0253 250

F1.S0254 250

F1.S0255 250

F1.S0256 250

F1.S0257 250

F1.S0258 250

F1.S0259 250

F1.S0260 250

F1.S0262 261

F1.S0263 261

F1.S0264 261

F1.S0265 261

F1.S0266 261

The data.frame, produced by the fData() function, includes row names. MSnbase uses
meaningful row names, in this case, a string describing the scan number of the MS level 2
scans. The data values are selected with the [precursorScanNum] syntax, since
precursorScanNum was one of the parameters listed by the fvarLabels(). In this file, scans
251–260 are MS level 2 scans triggered by data in scan 250 as the precursor scan. You
can see that there are 10 MS level 2 scans triggered from scan number 250 and 10 from
scan 260. It could be that all MS level 2 trigger events have 10 scans, or there could be
more for some and less for others, depending on how the instrument acquired the data. To
explore this, let’s summarize the type of scan data in this file using the base approach.
The function table() can be used to create data summaries from a data frame. The default
output of table() is the count of occurrences of values in a data frame. In this example,
the data.frame has only one column: the precursor scan number, so table() will output a
count of unique values of that column.

fData(ms2_data)["precursorScanNum"] |>

 table() |>

 head(15)

precursorScanNum

250 261 272 283 294 305 316 327 338 349 360 387 431 438 448

10 10 10 10 10 10 10 10 10 10 2 5 1 1 1

This output shows that there must be a decision rule about how many MS level 2 scans
are collected from a particular MS level 1 scan. Starting at scan 250, the next 9 MS level
1 scans triggered 10 MS level 2 scans, but no MS level 2 scans were collected for scans
363–386. Then the instrument collected two MS level 2 scans for scan 360 and five for
scan 387. After that, the system collected only one MS level 2 scan for the scans up to
number 448.
The table() function is useful but outputs a structure designed for display rather than use
as data. For example, to access precursor scans, you access the names of each column in
the table. To get these as strings, use the names() function. To use these values to get
access to other information from the ms_data variable, they also have to be converted from
strings to integers.

names(fData(ms2_data)["precursorScanNum"] |>

 table()) |>

 as.integer() |>

 head(15)

[1] 250 261 272 283 294 305 316 327 338 349 360 387 431 438 448

The process can be significantly simplified using the relational features of dplyr in the
tidyverse. For example, rather than creating a table for display, you can create a tibble
that holds the information you need and then use summarise() to perform the desired
summarization.

ms2_parents <- tibble(fData(ms2_data)["spIdx"],

 fData(ms2_data)["precursorScanNum"],

 fData(ms2_data)["precursorMZ"],

 fData(ms2_data)["precursorIntensity"],

 fData(ms2_data)["retentionTime"])

summary <- ms2_parents |>

 group_by(precursorScanNum) |>

 summarise(scan_n = n())

head(summary, 15)

A tibble: 15 x 2

precursorScanNum scan_n

<int> <int>

1 250 10

2 261 10

3 272 10

4 283 10

5 294 10

6 305 10

7 316 10

8 327 10

9 338 10

10 349 10

11 360 2

12 387 5

13 431 1

14 438 1

15 448 1

Another summary that can be useful is to determine the minimum intensity of precursor
ions used to produce MS level 2 spectra. Low-intensity precursors may need to be filtered
out since they might produce low-quality spectra.

min(ms2_parents["precursorIntensity"])

[1] 0

Surprisingly, the minimum value of all precursor ion intensities is zero. Does that mean
that MS/MS spectra were collected from nonexistent precursor ions? Before investigating
further, knowing the type of data in the precursorIntensity column would help:

typeof(ms2_parents$precursorIntensity)

[1] "double"

To perform conditional selection in base R, you pass a vector of Boolean values into
data.frame via the selector operator []. These expressions are very flexible, but they can
occasionally be confusing. Rather than syntax, the tidyverse approach selects data using
the dplyr::filter() function. Since the precursorIntensity is a variable of type double,
comparisons need to be in terms of ranges. In this example, I want to know all the
precursor intensities that might as well be zero, so let’s select the rows where the
intensity is less than 1. For an instrument using an ion counting detector, an intensity of
less than 1 represents no signal. In Fourier transform and other instruments with analog

detectors, peak intensities are electrical signals that can take on any value. In practice,
even electrical currents are often converted to integers, but the mzXML format used in
this example stores both m/z and intensity as 32-bit floating point numbers. The MSnExp
accessor function fData() returns intensity values as floating point numbers.

override the default significant figures setting for printing numbers

old <- options(pillar.sigfig = 7)

dplyr::filter(ms2_parents, precursorIntensity <= 1)

A tibble: 3 x 5

spIdx precursorScanNum precursorMZ precursorIntensity retentionTime

<int> <int> <dbl> <dbl> <dbl>

1 340 338 1032.77 0 165.504

2 341 338 1042.8 0 165.694

3 361 360 626.63 0 169.565

return to the default options

options(old)

A quick look at the first scan returned with a zero precursor ion intensity shows no
mistake in the data access as the <precursorMz> element clearly shows
precursorIntensity="0" for the precursor ion at m/z 1032.77.

<scan num="340" msLevel="2" peaksCount="23" polarity="+" scanType="Full"

 filterLine="FTMS + p ESI d Full ms2 1032.77@hcd35.00 [71.67-1075.00]"

 retentionTime="PT165.504S" lowMz="72.9376" highMz="309.894"

 basePeakMz="92.1098" basePeakIntensity="10183.8" totIonCurrent="50637.6"

 collisionEnergy="35">

 <precursorMz precursorIntensity="0" activationMethod="HCD">

 1032.77

 </precursorMz>

 <peaks precision="32" byteOrder="network" pairOrder="m/z-int">

 QpHgB0QvqgpCoeWiRUt8d0K19DhEdOhsQsHYNUWBfRNCxda9RXTj30LhypxFp0LcQuXJk0SA

 PtZC8AGsRE3JVEMCnXREJ/qiQxw2e0RMOO1DJ2mwRDRcvEMp/FZFVsmBQzn1kkSMAb5DTuSr

 RKK/lkNQ48ZEV+iEQ1jsO0TqU4tDXt3uRGhMNEN+0rRElPAcQ4Bo90VeS6RDhG1BRF7Y9UOF

 bKdEjGm6Q47zmkRz76FDmvJyREJdQw==

 </peaks>

</scan>

It is unusual for a precursor ion with zero intensity to be used to trigger an MS level 2
acquisition. One possibility is that the precursor was on an inclusion list from a previous
MS level 1 spectrum. In later chapters, I’ll go into more depth about inclusion and
exclusion lists, but to check that possibility, I can write a function to pair two acquisitions
and then use facet_grid() to plot and label the two spectra.
First, I will create a function called get_survey() that will return the selected scan
numbers as a single tibble.

get_survey <- function(dataset, scan_num_1, scan_num_2) {

 bind_rows(

 tibble(

 scan = scan_num_1,

 mz = mz(spectra(dataset[scan_num_1])[[1]]),

 intensity = MSnbase::intensity(spectra(ms_data[scan_num_1])[[1]])),

 tibble(scan = scan_num_2,

 mz = mz(spectra(dataset[scan_num_2])[[1]]),

 intensity = MSnbase::intensity(spectra(ms_data[scan_num_2])[[1]])))

}

Now, use get_survey() to get the two spectra, scan 338 and the preceding MS level 1
scan, which was scan 327. Filter the result to the mass range near the precursor ion
selected in scan 338 and then plot it with the preceding MS level 1 scan. What can be
seen in Figure 2.4 is that the m/z value 1032.77 was present in scan 327 with reasonable
abundance and somehow made it onto the inclusion list for scan 338 even though the
intensity of that ion intensity in scan 338 was zero.

Figure 2.4 Comparison of adjacent MS level 1 scans: 327 and 338 for precursor

m/z 1032.77.

In the facet_grid() layer, an R formula is used to indicate that the scan number scan
represents columns and ~ is read as is described by where the . means all the other
columns. The remaining columns that describe scan are, therefore, mz and intensity. The
R formula syntax was designed for describing statistical models [47], but it has many
other uses, including relating variables in plots.

p_spec_facet_a <- get_survey(ms_data, 327, 338) |>

 dplyr::filter(between(mz, 1032.5, 1033.0)) |>

 ggplot(aes(x=mz, y=intensity, ymax=intensity, ymin=0)) +

 geom_linerange() +

 facet_grid(scan ~ ., scales = "free_y")

print(p_spec_facet_a)

Using the same approach, and importantly, the same function get_survey(), the
comparisons can be made for the remaining anomalous precursors. See Figures 2.5 and
2.6.

Figure 2.5 Comparison of adjacent MS level 1 scans: 327 and 338 for precursor

m/z 1042.8.

Figure 2.6 Comparison of adjacent MS level 1 scans: 349 and 360 for precursor

m/z 626.63.

p_spec_facet_b <- get_survey(ms_data, 327, 338) |>

 dplyr::filter(between(mz, 1042.5, 1043.0)) |>

 ggplot(aes(x=mz, y=intensity, ymax=intensity, ymin=0)) +

 geom_linerange() +

 facet_grid(scan ~ ., scales = "free_y")

print(p_spec_facet_b)

p_spec_facet_c <- get_survey(ms_data, 349, 360) |>

 dplyr::filter(between(mz, 626.3, 626.7)) |>

 ggplot(aes(x=mz, y=intensity, ymax=intensity, ymin=0)) +

 geom_linerange() +

 xlim(626.5, 626.7) +

 facet_grid(scan ~ ., scales = "free_y")

print(p_spec_facet_c)

One compelling reason to keep data in a tidy format is that it makes data access and
manipulation much more straightforward than other ways of organizing data. Tidy data
can be thought of like data in traditional database tables. The dplyr package is organized
around the idea that functions are verbs that operate tables. I’ll use tidy data in the
following example to perform logical joins between tables with a shared key. Because of
what I discovered about the precursor ions in this data set, it will be helpful to analyze the

noise in the MS level 2 spectra so that noisy spectra are not passed forward in an analysis
workflow.
Several publications show how to estimate noise in MS level 2 spectra of peptides for
proteomics. One simple algorithm computes the “dynamic noise level” [48]. The dnl()
function implements the algorithm.

dnl <- function(.data, threshold = 0.5) {

 # sort the spectrum in order of increasing intensity

 sorted_spec <- arrange(.data, intensity) |>

 (function(x) {mutate(x, index = row_number(x$intensity))})()

 # perform a linear regression on all of the peaks above index 2

 m <- sorted_spec |>

 dplyr::filter(index > 2) |>

 (function(x) {lm(intensity ~ index, data = x)})()

 # compute the signal-to-noise ratio by dividing the measured intensity

 # by the predicted intensity from the linear model

 sorted_spec <- mutate(sorted_spec,

 snr = sorted_spec$intensity/predict.lm(m, sorted_spec))

 # assume the lowest intensity peak is noise (SNR=1)

 sorted_spec$snr[1] = 1

 # compute the SNR of the second peak based on the intensity of the first

 # using a threshold factor that defaults to 1.5

 sorted_spec$snr[2] = sorted_spec$snr[2]/

 (sorted_spec$intensity[1] * (1 + threshold))

 # return the number of peaks above the minimum SNR of 2 and

 # the sum of all the peak intensities below SNR of 2

 # as a tibble

 tibble(dplyr::filter(sorted_spec, snr >= 2) |> summarise(peaks = n()),

 dplyr::filter(sorted_spec, snr < 2) |> summarise(noise = sum(intensity)))

}

In Figure 2.3, the most prominent chromatographic peak appears at around 950 seconds.
Using the dynamic noise level function dnl() above, you can iterate through this subset of
the MS level 2 spectra and compute the number of peaks with an SNR greater than 2 and
the total amount of noise in each spectrum. Next, the program stores the results in a
tibble called dnl_results.

start and end retention times (in seconds) of the region of interest

start_time = 935

end_time = 985

rt_region = filterRt(ms2_data, c(start_time, end_time))

for (spec in 1:length(rt_region)) {

 spec_dnl <- tibble(

 mz = mz(spectra(rt_region[spec])[[1]]),

 intensity = MSnbase::intensity(spectra(rt_region[spec])[[1]])) |>

 dnl() |>

 mutate(scan=fData(rt_region)["spIdx"][[1]][spec], .before=peaks)

 if(spec == 1) {

 dnl_results <- spec_dnl

 } else {

 dnl_results <- add_row(dnl_results, spec_dnl)

 }

}

I’ve characterized the highest intensity MS level 1 region of the chromatogram. Now, I
can join the results of noise analysis dnl_results with the tibble I created earlier that
holds the precursor scan information ms2_parents. Since the two tables share a common
column, dplyr provides the left_join() function, which, as the name implies, performs a
left join that matches rows in the first table (left) with the rows in the second (right) table
when the values of specified columns match.

ms2_summary <- dnl_results |> left_join(ms2_parents, by=c("scan" = "spIdx"))

head(ms2_summary, 10)

A tibble: 10 x 7

scan peaks noise precursorScanNum precursorMZ precursorIntensity

<int> <int> <dbl> <int> <dbl> <dbl>

1 3557 1 204702. 3554 846. 2536920

2 3558 2 102598. 3554 630. 1793200

3 3559 3 134141. 3554 626. 1706860

4 3560 1 202821. 3554 846. 2536920

5 3561 5 409428. 3554 1393. 1203720

6 3562 1 54268. 3554 851. 1079130

7 3563 5 441688. 3554 1393. 1203720

8 3564 4 52712. 3554 818. 953234

9 3566 7 147042. 3565 675. 1100390

10 3567 7 123841. 3565 675. 1100390

i 1 more variable: retentionTime <dbl>

How many noise values are there between start_time and end_time? The nrow() from base
R gives the number of rows in a data.frame or a tibble:

nrow(dnl_results)

[1] 260

In the ms2_parents there were nrow(ms2_parents) rows:

nrow(ms2_parents)

[1] 4027

In the left_join() performed above, the 260 rows from dnl_results were joined with the
4027 rows in ms2_parents by matching the scan value in dnl_results with the spIdx column
in ms2_parents. Performing the left join operation starting with dnl_results keeps only the
matches for the scan column, so the length of ms2_summary should be 260:

nrow(ms2_summary)

[1] 260

To conclude this section, I’d like to show how R can make highly readable tables. In
Section 2.3 below, I will introduce dynamic reports using RMarkdown using the knitr
package. The kable() function from the knitr package generates high-quality tables. I
used the console output in the previous examples when displaying a data.frame. While this
is quick and convenient, it is not attractive or easy to read. You can use the kable()
function to make tables in a variety of formats (Table 2.1):

knitr::kable(head(ms2_summary, 15), format="pipe",

 caption="MS2 Spectral Quality Summary")

TABLE 2.1

MS2 spectral quality summary.

scan peaks noise precursorScanNum precursorMZ precursorIntensity retention

3557 1 204701.90 3554 846.4405 2536920 935.0
3558 2 102598.24 3554 630.4591 1793200 935.2
3559 3 134141.33 3554 626.3974 1706860 935.4
3560 1 202820.78 3554 846.4405 2536920 935.6
3561 5 409427.90 3554 1392.9473 1203720 935.8
3562 1 54268.43 3554 851.3958 1079130 935.9
3563 5 441688.26 3554 1392.9473 1203720 936.1
3564 4 52712.04 3554 818.0127 953234 936.3
3566 7 147042.13 3565 675.4562 1100390 936.7
3567 7 123840.67 3565 675.4562 1100390 936.9
3568 0 25026.73 3565 1144.1958 369413 937.1
3569 9 435980.30 3565 1402.9143 2280310 937.3
3570 6 195635.68 3565 662.4293 2091100 937.5
3571 10 482915.21 3565 1402.9143 2280310 937.7
3572 8 550243.90 3565 1407.8700 2161240 937.9

The pattern for examples in this book uses application-specific packages, such as those
from Bioconductor (and other collections), and then moves the results into tidy data
structures. I have touched on several aspects of the tidyverse for plotting and keeping
data clean and usable. The focus on tidy data leads to programs that are easier to

understand than those that use many different data structures from the many mass
spectrometry-specific functions available. To conclude this example, I’ll introduce one
more topic: How to create executable reports that integrate the analysis’s narrative with
the code used to perform all the calculations. These dynamic reports will use RMarkdown
and the knitr package.

2.3 Dynamic Reports with RMarkdown

Making research more reproducible is a complicated task with many different types of
issues. This book focuses on reproducible computation to help make research results
more transparent, organized, and inclusive. The approach recommended by the R
community is to use dynamic documents using Markdown. The Markdown concept has
significantly impacted software development and other technical fields. Because
Markdown documents are flat text files, they are inherently portable and resistant to
technological changes. The knitr package extends the Markdown concept to include
executable code. Because of the excellent support of knitr and RMarkdown in the RStudio
IDE, it is now quite simple to create reports that include the explanation of an experiment
and its analysis along with the executable code used to perform the analysis, in the report.
I want to show how easy it is to create a literate program based on some of the analyses
performed earlier in the chapter.
All RMarkdown documents contain two main parts: metadata in YAML (yet another
Markdown language) and the document’s body, which is plain text interpreted using
Markdown conventions and code chunks. Code chunks are blocks of executable code that
can generate output that is incorporated into the final document. The knitr package can
generate many output formats from an RMarkdown document by using the pandoc
program [49]. Creating HTML or PDF files via LaTeX is typical, but using pandoc, knitr
can generate many other formats.
The YAML header begins and ends with --- and must at least include the output: type but
can also include title, author, and date information. After the header, you can mix text
following markdown conventions and R code.

title: "Base Peak Chromatograms from 2017_04_08_TSW_Sponge"

author: "Randall Julian"

date: "2023-10-07"

output: html_document

The following code will load the MSnbase and tidyverse libraries and then read

an MS data file using the readMSData() function using the "onDisk" option which

saves on memory usage. The program will compute the base peak chromatogram

(using the aggregationFun = "max" option) and finally, plot the chromatogram

using ggplot().

```{r message=FALSE, warning=FALSE}

library(MSnbase)

library(tidyverse)

ms1_tic <-  readMSData(file.path("data","2017_04_08_TSW_Sponge.mzXML"),

                      mode="onDisk") |>

            filterMsLevel(msLevel = 1) |>

            chromatogram(aggregationFun = "max")

ms1_tic[1] |>

    (function(x) {tibble(MSnbase::rtime(x), MSnbase::intensity(x))})() |>

    setNames(c('rt', 'inten')) |>

    ggplot(aes(x=rt, y=inten)) +

    geom_line()

```

This code generates the output shown in Figure 2.7:

Figure 2.7 HTML output from RMarkdown.

2.4 Summary

In this chapter, I have given a very brief introduction to using Base R, the tidyverse, and
packages in the Bioconductor repository in the form of a dynamic document. In the next
chapter, I begin a more detailed discussion on each phase of data analysis: reading,
wrangling, exploring, and analyzing.

Chapter 3

Wrangling Mass Spectrometry Data

3.1 Introduction

Data wrangling is the phrase the data science community
adopted to describe steps needed to get data organized for
analysis. While mass spectrometers are instruments which
produce a raw data stream, meaning that while operating a
detector is generating a signal, usually an ion current or ion
counts. Mass spectrometers can be configured to make many
different types of measurements, and the control system
organizes the signal, digitizes it, and saves it as raw data. In
addition to raw data; therefore, the data describing the

measurement is required for any type of analysis. At a higher
level, the organization of the experiment can create data that
can be used to determine the quality of a specific
measurement and determine the limits of an analysis. At the
next level up, whole experiments can be saved and organized
to aid in interpreting raw data. Examples of this data include
libraries of spectra, libraries of structures, and other
chemical information.
In this chapter, I will look at different types of data
associated with mass spectrometry and show ways to
manipulate them to make analysis easier. Most mass
spectrometry data do not start off in tidy formats described
so far. Mass spectrometry data analysis tasks can usually be
described as analysis pipelines. There have been many data
analysis pipelines described for various mass spectrometry
experimental analysis. These are almost always linear
processes that begin with reading data and end with
generating a report. As described by Hadley Wickham et al.
in R For Data Science [30, 31], data science follows an

iterative process. In some cases, this initial work will produce
a linear pipeline that can be reused for specific problems. An
important goal of this book is to help you perform analysis
and borrow components of previous work without necessarily
forcing your analysis problem into the shape of an existing
pipeline.

3.2 Accessing Mass Spectrometry Data

Most of the data used for mass spectrometry analysis resides
in files stored on a disk. There are many ways to access data
in files using R. Simple text files, like the comma-separated
values (CSV) files used in the introductory example, can be
read directly using base R functions or tidyverse functions.
For more complex files, such as the extensible markup
language (XML) files also shown in the earlier example may
be more easily read by using an application-specific function
like mzR described in Chapter 2. Simple file readers assume a
minimum structure, such as an encoding or specifying field
delimiters. Complex file readers like mzR assume a very
specific use of a particular file format, such as a published
way to encode data in XML. You can also read file formats
using specifications like XML, with assuming that the data
follows any specific data encoding. Intermediate -level file
readers can read files following standards like XML without
making any further assumptions. The read_xml() function in
the xml2 package is a useful example of an intermediate -level
file reader. With XML, the reader can at least tell if the file is
well-formed before trying to parse it into a data structure.
Needing to read files at all levels, from simple to complex, is
common in mass spectrometry. If you find an application-
specific function to read a file containing data, it is usually
best to use it if it gives you access to the data you want. The
goal will then be to translate that data into a tidy format.
Application-specific functions are sometimes designed to be
part of a particular analysis process. If that process is

different than what you want to implement, you may find it
doesn’t give you access to the data you want in the format
you need. In that case, you will need to drop down a level and
use a file reader that makes fewer assumptions about the file.
For example, mzR assumes that the data file follows the XML
syntax, and, further, that it uses XML to store data according
to a supported mass spectrometry XML schema. If the data
you want to read uses the XML syntax but is not one of the
supported specifications, you can drop that assumption and
use an XML parser. If the file does not follow the XML
specification, you can still read the file using a character
reader such as the read_file() function from the readr
package, which is part of the tidyverse.
Scientific data is often stored using a binary rather than text
format. Like XML, there are binary specifications that can be
read with an intermediate function. Specifications such as
netCDF [50] and HDF5 [51] are widely used, platform-
independent binary formats. Both of these formats are used
in mass spectrometry and described later in this chapter. If
you need to read a binary file directly, the ReadBin() function
is available in Base R. To use these low-level functions, you
will have to know much more about the binary file, but if the
specification is published, with extra work, you can usually
read any file.
Often a function that reads a binary file will link to an
application programming interface (API) written in another
language to make reading more efficient. For example, the
xml2 package was built using the libxml2 library, which is
written in C. Some of the vendor-specific file formats
described in this chapter use this approach, but building on
an API supplied by the vendor. Sometimes, this will require
running the program on the vendor-specific CPU and OS
configuration. Accessing data via APIs will be discussed
below, but one of the main motivations for creating open,
text-based file formats is to avoid having to read vendor
formats directly unless it’s necessary.

3.2.1 Open, Closed, Binary, and Text File Formats

It is common practice for software to use a proprietary,
application-specific format to store data. Developers can
optimize the format for the needs of the program they are
writing and its users. Using this approach, the program
manages the information needed to read and write files
within the source code. Files of this type can be exchanged
between users of the programs, as long as they have the
particular program that originally wrote the file. If a file
format is closed, then the file is not designed to be read or
written by anyone other than the developer of the original
software. An example of this approach is the early xls file
format used by Microsoft Excel. It is a proprietary format,
readable by anyone with Excel. For other programs to use the
format, the details had to be either disclosed by Microsoft or
the format had to be reverse engineered. There are several
advantages to the developer of the closed format approach.
These formats are usually optimized for performance, and the
developer can change them when their program changes and
its storage requirements change. As long as the program
keeps track of how to read various versions of the file, it can
remain backward compatible and gives the developer
flexibility and speed. At the time of writing, the Microsoft
website reports that the xls format has had 10 major versions
since 2010, with a total of 49 different version numbers.
Microsoft switched the default format for Excel and started
publishing the specification of the xls and other formats [52],
which made it easier for other programmers to read files of
that type. Microsoft effectively opened the xls format while
leaving it a binary format and fully under its control.
An open format is one that is publicly described and can be
either binary or text. Excel provides another good example of
this. In 2007, Microsoft switched to its Open Office Format
xlsx, which is a set of directories and text files compressed
into a single file using the zip compression format. The

uncompressed text files can be opened by any program that
can read plain text, and the specification for the contents is
publicly available [53]. Like the xls format, the xlsx
specification has been revised multiple times and has 24
major versions.
In mass spectrometry, instrument vendors typically use a
closed format optimized for performance. These formats are
almost exclusively binary rather than text files. Further, most
of the files you encounter in mass spectrometry are closed,
and their binary formats are not disclosed. For various
reasons, there has been no equivalent movement to open
these formats, as was done by Microsoft. Instead, instrument
vendors have chosen to make the data available via
programming interface libraries. You can use a programming
language to call a vendor library to extract some, but usually
not all, of the information from a mass spectrometer. Over
the years, vendors have also provided various export formats
that can be generated from within their programs. They have
also provided mechanisms to import some types of data,
typically work instructions or instrument methods.
The desire to use more powerful computing systems which
use UNIX-like operating systems rather than the one used to
control the instrument (typically a version of Microsoft
Windows) created the need to move beyond the closed
formats to open formats. The intent of these formats was not
to exchange data between instrument types (although this
was briefly achieved with the ANDI/AIA standard), but to
exchange data between different computing systems and
allow researchers to write their own programs to perform
data analysis. In order to perform data interchange, the
specification had to describe both the syntax (where are data
elements and what is their data type) and the semantics
(what do the values of a data element mean) for the file.
Early data exchange formats for mass spectrometry were
simple text files containing relatively simple data. As mass

spectrometry has evolved, experiments have become more
sophisticated, and data files now need to describe more
complex configurations and relationships. Fortunately, all of
the science evolved with the development of computer
systems, and the need to exchange data of all types has
become a central issue for computer science. It’s not a
coincidence that hypertext markup language (HTML) and the
World Wide Web were developed to exchange complex
scientific information. The mass spectrometry community has
been part of the push to improve data exchange since the
first computers were used to control instruments. In its
formats, you can see the evolution of data exchange
technology.

3.2.2 Syntax, Semantics, and Controlled

Vocabularies

The syntax of a file is the description of the structure of the
data. The description specifies the data elements, their
relationships, their data types, how types are represented,
and what constitutes a complete file. Another word for this is
the schema of the data. File formats like XML and JavaScript
Object Notation (JSON), and others, can store the schema for
a data file format as a schema file that can be read and used
by a program to make sure the data file is syntactically

correct before attempting to parse the file. In order to make
decisions based on data in a file, a program also has to have
information about what the data elements mean. This
includes, for example, what text strings are allowed in a data
element or the units of a numeric value. Like in natural
language, it is possible to create a data file that is
syntactically correct and readable by a program but
meaningless in terms of describing an experiment. Valid files
are said to be semantically correct. Semantic specifications
define the allowed values for data elements, often in the form
of controlled vocabularies. Like other aspects of file formats,

controlled vocabularies can either be open or closed. For a
program that is maintained by a software developer, the only
requirement is that their program be able to use their own
files. The actual values and units of data elements do not
need to follow any particular external convention. Further, if
the developer publishes the specification, then it is up to any
other program to interpret the values according to that
specification, regardless of scientific convention. This can
lead to a file format being so application-specific that its use
for other programs is limited for purposes of data
interchange.
Standard formats are developed to allow interchange by a
scientific community, usually by working groups of scientific
societies or by industry associations. The result is an
agreement on the limits of the use of the format (what will
and will not be covered), the minimum schema, and the
minimum controlled vocabulary. The best of these standards
undergo a peer review process and result in something
resembling a computer-readable version of a scientific paper.
The advantage of standards is that changes are made in such
a way that allows developers to maintain their programs and
include requests from the community for enhanced
functionality or expanded scope or semantic content. Even if
a format is open, when it is controlled by a single developer,
changes can be made independently without regard to
community expectations or requirements. So, like all things
that are built by committee, standards change slowly and
often reflect a lowest common denominator among many
competing interests.
A middle ground can be achieved to make standards stable
enough for reliable software development but flexible enough
to keep up with a rapidly changing scientific area like mass
spectrometry. The result is an increase in complexity in
specifying both the syntax and the semantics of a format.
Separating the schema from the controlled vocabulary is one
way to allow a format to change over time; this has been done

in most recent standardization efforts in mass spectrometry,
where the syntax is specified by a schema and the controlled
vocabulary is specified by an ontology managed by a separate
process. This way the syntactic validity of a file can be
checked before attempting to read it, and once read, its
semantic validity with regard to a specific application can be
checked before operations using the file are performed. This
allows data to be interchanged reliably, with varying levels of
descriptive power and keeps changes to programs to a
manageable level, ensuring that files are valid so that
program behavior can be predictable.
In the next sections, I will show examples of some of the
common file formats used in mass spectrometry and describe
how to wrangle them into tidy structures that can be used to
take full advantage of the tidyverse and other modern
programming paradigms used in R.

3.3 Types of Mass Spectrometry Data

We use and produce many types of data in the analysis of
mass spectrometry experiments [54]. A summary of these
data types and their relationships to various applications and
analysis steps is shown in Figure 3.1.

Figure 3.1 Summary of data types and applications

used in mass spectrometry.

Data about the sample and the instrument configuration are
used by the vendor acquisition application to label the data
(sample names, concentrations for calibrations, etc.) and to
set parameters on the instrument (m/z ranges, voltages, flow
rates, etc.). The application that performs the acquisition
creates a vendor-specific output, which can be a file or set of
files. As described in Section 3.2.1, these formats are often
closed binary formats. Conversion programs are used to
convert these files to open formats that can more easily be
read by data analysis applications. Since file conversion
programs that read the vendor binary files directly use

vendor-supplied code libraries, these code libraries can also
be used directly to write data analysis programs that read
vendor-specific binary files.
Data analysis programs span the range from vendor-provided
applications to programs written by individual researchers to
answer a particular question. Data analysis programs that
perform design-of-experiment calculations, for example, can
write files describing pre-mass spectrometry steps describing
which samples are to be processed, and in what order, and
provide settings to optimize for a specific outcome. Other
types of data analysis applications can create visualizations
and no other output, or they can create analysis results that
have a use in future analysis. The data analysis could
generate predicted chemical structures, which are then
stored in a structure library. Structure libraries can also be
used by data analysis programs to compute the relationship
between measurement data and the structures in the
database. The same is true for sequence libraries. The data
analysis application could also simply store the entire result
in a data repository for later use or extract specific spectra
from the results to create a spectral library. Again, all of
these data types can be both outputs from some types of
analysis and used as inputs in other analysis. Once a spectral
library is created, for example, it can be searched for
matches between spectra obtained in a measurement and
previous measurements. Searching spectral libraries will be
covered in detail in Chapter 7.
In this chapter, I will focus on data analysis programs written
in R, but it is important to keep in mind that these programs
might work in conjunction with other data analysis programs
that have created other types of output. For example, a
program may have taken information from a structure
database and computed simulated spectra under a variety of
possible instrument conditions. Using R, you might write a
program that reads the pre-mass spectrometry data to
determine which conditions were used to collect a dataset

and then compares your data to a subset of those theoretical
spectra with the goal of producing a list of possible structure
matches. The reason programming in R for mass
spectrometry is so powerful is that the possibilities for data
analysis are nearly endless.

3.3.1 Investigation Metadata

The data associated with the pre-mass spectrometry aspects
of an investigation is the least standardized of all the types of
data used in mass spectrometry. Data analysis is usually
focused on the output of a measurement, and whatever
information about the sample that is captured is normally in
those files. However, one of the prerequisites of reproducible
research is to have as complete a description of the
investigation’s goals and methods as possible. The specific
expectations of the data analysis need to be stated prior to
the investigation, which includes the specific studies that
comprise the investigation and the assays that were used to
perform the studies. The expectations of the investigation are
easily stated in natural language. However, it is often the
case that the description of specific studies (what samples
were used and for what purpose) and the details of assays
(everything from sample preparation to the specifics of the
apparatus used in measurement) need to be included in the
data analysis process and ultimately need to be stored in data
structures rather than human language text. In mass
spectrometry, this information is the context for the raw mass
spectrometry data and an indication of what is expected from
the measurements produced. For many years, various work
has been done to model and create data structures to hold
detailed study and assay information when mass
spectrometry is used for large and small molecule studies.
The Human Proteome Organization (HUPO) created the
Proteomics Standards Initiative (HUPO-PSI), which has
published a number of minimum reporting requirements for

describing proteomics experiments, “the minimum
information about a proteomics experiment (MIAPE)” [55]
which includes extensions for different aspects including
mass spectrometry, informatics, and various sample
preparation and separation techniques [56–60]. These
reporting guidelines led to attempts to create specific data
formats to implement the requirement. The community has
been highly successful at making raw mass spectrometry
data accessible [61]. For other aspects of mass spectrometry-
based assays, specifications such as gelML [62] and spML,
mentioned by Deutsch [54], have turned out to be difficult for
the community to implement.
Since fine-grained models have not been widely adopted, the
mass spectrometry community has turned to higher-level
models to describe investigations. These are machine
readable, and use a combination of controlled vocabularies
and natural language to describe investigations. The most
active project for describing investigations is organized by
the ISA Commons [63]. ISA stands for Investigation-study-
assay, and its goal is to promote a framework for
interoperable data within the bioscience community [64].
The central component of the ISA framework is the ISA
abstract model [65] which defines the data elements of the
model and their relationships. The data model has been
implemented as a tab-separated-value (TSV) format [66] and
using the JSON format [67, 68]. There are also programming
language libraries for R and other languages [69, 70].

3.3.1.1 Using the ISA Model in R

For this example, I will use a dataset from the Metabolites
data repository [71], which uses the ISA specification for
storing metadata and data from publications. I will show how
to read the metadata from the investigation MTBLS1572
published in “Comparison of Full-Scan, Data-Dependent, and

Data-Independent Acquisition Modes in Liquid
Chromatography-Mass Spectrometry Based Untargeted
Metabolomics.” by Jian Guo and Tao Huan in Analytical

Chemistry in 2020 [72].
There are a few ways to parse TSV and CSV files in R. CSV
files are probably the most common file format in all of data
science and R programming, but the selection of separator is
arbitrary, and the tab character is also a good choice. Using
the tab allows the comma to be used in values, which is
especially useful when values contain natural human
languages that use the comma.
Since the ISA specification can be represented as either TSV
files or JSON files, I’ll use the Risa package [73, 74] from
Bioconductor, which can read both file formats. The example
file chosen here is a TSV. To read JSON files using Risa, refer
to the documentation and publications on the package.
I’ll use the MTBLS1572 ISA files to show how to get a single
table that includes all of the important factors for using the
raw data to confirm various claims in the original publication.
Using Risa to load the dataset is straightforward. The
readISAtab() function simply needs the path containing the
ISA files. As shown in Table 3.1, there are three types of files
in the directory. The investigation file lists all of the study

and study assay files that are expected. The readISAtab()
function parses the investigation file, then parses each study
file and finally each assay file and populates a single S4
object of type ISATab.

TABLE 3.1

Overall investigation description.

Data type Name Syntax Usage

Investigation
description

ISA TSV/JSON Description of a
collection of studies

Study description ISA TSV/JSON Description of a study
Assay description ISA TSV/JSON Description of an assay

library(Risa)

investigation <-

readISAtab(file.path("data","MTBLS1572"))

slotNames(investigation)

[1] "path"

"investigation.filename"

[3] "investigation.file"

"investigation.identifier"

[5] "study.identifiers" "study.titles"

[7] "study.descriptions" "study.contacts"

[9] "study.contacts.affiliations" "study.filenames"

[11] "study.files" "assay.filenames"

[13] "assay.filenames.per.study" "assay.files"

[15] "assay.files.per.study" "assay.names"

[17] "assay.technology.types"

"assay.measurement.types"

[19] "data.filenames" "samples"

[21] "samples.per.study"

"samples.per.assay.filename"

[23] "assay.filenames.per.sample"

"sample.to.rawdatafile"

[25] "sample.to.assayname"

"rawdatafile.to.sample"

[27] "assayname.to.sample" "factors"

[29] "treatments" "groups"

[31] "assay.tabs"

Since ISATab is an S4 object, class variables are stored in
slots, and the names are accessible from the slotNames()
function. For S3, object variables are accessed by name using
the $ symbol. For S4 objects, the @ symbol is used.
A basic piece of information is “What is this investigation
about?” That is stored in the study.titles S4 slot. In ISA,
there can be more than one study in an investigation:

investigation@study.titles

[1] "Comparison of Full-Scan, Data-Dependent, and Data-

Independent Acquisition Modes

in Liquid Chromatography-Mass Spectrometry Based

Untargeted Metabolomics."

The longer description is in the studies.descriptions slot.

investigation@study.descriptions

[1] "Full-scan, data-dependent acquisition (DDA), and

data-independent acquisition (DIA)

are the three common data acquisition modes in high

resolution mass spectrometry-based

untargeted metabolomics. It is an important yet underrated

research topic on which

acquisition mode is more suitable for a given untargeted

metabolomics application.

In this work, we compared the three data acquisition

techniques using a standard mixture of

134 endogenous metabolites and a human urine sample. Both

hydrophilic interaction and

reversed-phase liquid chromatographic separation along

with positive and negative

ionization modes were tested. Both the standard mixture

and urine samples generated

consistent results. Full-scan mode is able to capture the

largest number of metabolic

features, followed by DIA and DDA (53.7% and 64.8%

respective features fewer on average

in urine than full-scan). Comparing the MS2 spectra in DIA

and DDA, spectra quality is

higher in DDA with average dot product score 83.1% higher

than DIA in Urine(H), and the

number of MS2 spectra (spectra quantity) is larger in DIA

(on average 97.8% more than DDA

in urine). Moreover, a comparison of relative standard

deviation distribution between modes

shows consistency in the quantitative precision, with the

exception of DDA showing a minor

disadvantage (on average 19.8% and 26.8% fewer features in

urine with RSD < 5% than full-scan

and DIA). In terms of data preprocessing convenience,

full-scan and DDA data can be processed

by well-established software. In contrast, several

bioinformatic issues remain to be

addressed in processing DIA data and the development of

more effective computational programs

is highly demanded."

Later, this string can be incorporated into any markdown
document you might make, but in the meantime, it gives you
enough detail to determine if the data collected will serve
your analysis purpose. It is human-readable, and the specifics
are not in any other field.
What can be determined from the description is that there
are three data acquisition modes that were performed on
both a standard containing 134 known compounds and a
human urine sample. I can also tell that two chromatography
methods were used and that both positive and negative
ionization modes were used. One claim that can be tested is
the consistency between the standard mixture and the human
sample, and one area of investigation suggested is to improve
the processing of data-independent acquisition (DIA) assays.

For purposes of this chapter, the goal will be to wrangle the
raw data associated with this investigation into data
structures which simplifies testing the stated observations
and working on improving DIA processing.
The readISAtab() function parses all of the study and assay
file content into data frames, and it is helpful first to look at
what information is available from the individual assays that
were performed.

met_assays <- investigation@assay.files

length(met_assays)

[1] 6

names(met_assays[[1]]) |> head(12)

[1] "Sample Name"

[2] "Protocol REF"

[3] "Parameter Value[Post Extraction]"

[4] "Parameter Value[Derivatization]"

[5] "Extract Name"

[6] "Protocol REF"

[7] "Parameter Value[Chromatography Instrument]"

[8] "Term Source REF"

[9] "Term Accession Number"

[10] "Parameter Value[Autosampler model]"

[11] "Term Source REF"

[12] "Term Accession Number"

From this sample of the names of the columns in the data
tables extracted by Risa from ISA files, it’s clear that the
assay tables are designed for human consumption, like the
investigation@study.descriptions variable. The use of
duplicate column names will make tidy table operations
impossible since a program won’t be able to tell which
column is being specified. Attempting to convert this
data.frame to a tibble will produce an error unless a

.name_repair function is specified. The universal repair
renames columns so that they are both unique and have no
characters that prevent them from being valid variable
names:

met_tbl <- as_tibble(met_assays[[1]], .name_repair =

"universal")

names(met_tbl)[1:3]

[1] "Sample.Name"

"Protocol.REF...2"

[3] "Parameter.Value.Post.Extraction."

The syntactic names provided by .name_repair="universal"
work, but are not very readable. Below, I show how to use a
custom function for repairing the names that improves
readability. But first, why are there duplicate names in the
first place?
In the ISA format, the duplicate names are associated with
the use of a controlled vocabulary. Since any code you write
will have to take the specifics of the variables into account in
the code, you will have to evaluate these manually and
incorporate those details into your program. A good example
is when a sample is diluted; the units of concentration need
to be known if the actual concentration factors into a
calculation. For the example at hand, there are no variables
that require units, except for Parameter Value[Scan m/z
range] which on inspection takes the form of start-end, and
the name m/z indicates the units are the standard
Dalton/charge. The variable Parameter Value[Ion source]
comes from the controlled vocabulary for mass spectrometry
http://purl.obolibrary.org/obo/MS_1000073 which can be
found at the OBO foundry [75]. The vocabulary term is
formatted using the Internationalized Resource Identifier

http://purl.obolibrary.org/obo/MS_1000073

(IRI) standard [76],which means the actual control
vocabulary name is ms
(https://obofoundry.org/ontology/ms.html) and the specific
term has an accession number 1000073 in the psi-ms.obo.

[Term]

id: MS:1000073

name: electrospray ionization

def: "A process in which ionized species in the gas

phase are produced from an

analyte-containing solution via highly charged fine

droplets, by means of

spraying the solution from a narrow-bore needle tip at

atmospheric pressure in

the presence of a high electric field. When a

pressurized gas is used to aid in

the formation of a stable spray, the term pneumatically

assisted electrospray

ionization is used. The term ion spray is not

recommended." [PSI:MS]

synonym: "ESI" EXACT []

is a: MS:1000008 ! ionization type

While the default name repair is serviceable, column names
can be fixed using a custom function that transforms the
name strings into the format of column names you want.
There are several ways to do this. For this example, I want to
replace the spaces with _, remove the / character, and
extract the names from within the [] symbols for Parameter
Value[]. I’ll call the function fix_names().

https://obofoundry.org/ontology/ms.html

fix_names <- function(x) {

 # use a regular expression to replace spaces with

"_"

 # then replace the "/" with an empty string

 # finally extract a string from between "[]" in a

name

 # if no "[]" characters exist, the str_match()

return will be NA

 name <- gsub("\\s+", "_", x)

 name <- gsub("\\/", "", name)

 ex_name <- str_match(name, "\\[(.+[^\\]])")[,2]

 # use the extracted name list and replace any non "

[]" entries

 # which have the value NA with items from the name

string

 for(i in 1:length(ex_name)){

 if(is.na(ex_name[i])) {

 ex_name[i] <- name[i]

 }

 }

 return(ex_name)

}

Calling fix_names() on column names will correct the names
according to my specific rules:

print(fix_names("Parameter Value[Scan m/z range]"))

[1] "Scan_mz_range"

print(fix_names("Sample Name"))

[1] "Sample_Name"

Now I am ready to use tibble() with all of the data collected
in this investigation into a table using my custom name repair
function.

list the duplicate names to be removed

dup_names <- c("Protocol REF","Term Source REF","Term

Accession Number")

start with an empty list

assay_list <- list()

for each assay in the investigation, remove all the

duplicate columns

and append it to the empty list

for(assay in investigation@assay.files) {

 assay <- assay[,!(names(assay) %in% dup_names)]

 assay_list <- append(assay_list, list(assay))

}

convert the list of data frames to a tibble using

bind_rows()

and repair the column names using the custom

fix_names() function

assay_tbl <- bind_rows(assay_list) |>

 tibble(.name_repair = fix_names)

assay_tbl |>

 names() |>

 head(5)

[1] "Sample_Name" "Post_Extraction"

[3] "Derivatization" "Extract_Name"

[5] "Chromatography_Instrument"

Later I can use the Derived_Spectral_Data_File to read the
raw data collected in the study and use it for visualization
and computation, and use the other columns to compare data
collected under the same conditions specified by the other
variables (Column_type and Scan_polarity, etc.).

3.3.2 Instrument Methods

Currently, there is no standard data model for storing the
specifics of pre-mass spectrometry data. In single-level MS
measurements, most of the instrument method information is
available in the raw data file. In investigations that use
multiple-stage mass spectrometry (MS/MS), it is helpful to
break out the selected reaction monitoring (SRM) transitions
(mz1–mz2), so they can be exchanged in a vendor-
independent way. Two formats are commonly used for storing
and exchanging transitions: sky (skyline document) and TraML
(Transitions Markup Language) shown in Table 3.2.

TABLE 3.2

Instrument method data.

Data type Name Syntax Usage

SRM
transitions

sky XML Transitions monitored in MS
analysis

TraML XML Transitions monitored in MS
analysis

Both the skyline sky file and the HUPO-PSI TraML file use the
XML format. XML is used for a variety of mass spectrometry-
related data exchange tasks, and in this section, I will
describe the basic task of reading an XML file directly. It is
not always required to read the XML file format directly in R,
when there is a standard or de facto standard, there are
probably already packages available to read the XML file into
R. I will have more to say about this in Section 3.5.1.

3.3.3 Example of Reading Skyline Main

Documents

In this example, I will extract data from a Skyline main
document into several tibbles, each containing a unique
identifier, allowing the tables to be joined and queried using
the tidyverse functions. Since one of the key features of
Skyline is to associate SRM transitions with peptide and
protein analysis, the goal will be to create tables that hold the
protein information, which is the same for all peptides found;
another to hold the peptide information, which again is the
same for all SRM transitions used; and a third for the SRM
data. Along the way, I will point out the difference between
XML attributes and XML elements and give some pointers for
dealing with the specifics of Skyline data.
Before reading an XML file directly, it is helpful to know the
schema. XML has a schema description language called XSD
that can be used to understand the details of a specific XML
format, as well as to validate that a file using that schema
follows correct usage.
Figure 3.2 is a schematic of the Skyline main document XML
schema. You can see that a Skyline document begins with a
tag called srm_setting, which has two required attributes:
format_version and software_version.

Figure 3.2 XML schema describing the Skyline main

document. Required components are drawn in solid

boxes while optional components are drawn in

dashed-line boxes.

In plain text, like previous XML examples, it looks like this:

<srm_settings format_version="3.73"

 software_version="Skyline-daily (64-bit)

4.0.9.11635"

>

For this example, I will use data from Panorama Public [77]
which is a repository for sharing targeted quantitative results
contained in Skyline documents. The specific investigation I
will use as an example is called “gRED – Automated QC of
Targeted MS Data” [78] which is the deposited data from a
paper published in 2018 by Toghi Eshghi et al. in Clinical

Proteomics, called “Quality assessment and interference
detection in targeted mass spectrometry data using machine
learning” [79].
Unlike the approach used in Section 2.1.1, there is no
equivalent package for reading Skyline files into R. In this
situation, you can use the XML schema file to find the names
and locations of data you want, and then parse (i.e., read) the
XML file directly and then extract the elements you need for
your analysis.
There are two main packages for parsing XML files in R: XML
[80] and xml2 [81]. Bioconductor packages like MSnbase use
XML, while xml2 is used by tidyverse. In this book, when
reading XML files directly, I will use xml2 since the goal is to
wrangle data into the tidyverse. If you have a reason (such as
contributing to Bioconductor) to use XML, refer to the package
documentation for help.
The first line of the .sky file makes it clear that Skyline XML
files are open vendor files with many versions similar to the
Microsoft .xlsx format described earlier. With XML, the
process is usually done in three steps: the file is parsed,
validated, and then data is extracted using a query. Parsing
ensures that the file is a properly formed XML document,
while validation checks to make sure that the XML file
follows a specific schema. For the example file shown above,
the schema version is given as 3.73. No schema location is
given in the file, which means that if you want to validate the
file, you will have to locate and download the correct version
of the Skyline schema file from the Skyline project website. In
the chapter on reproducible research, I will give more details

on how to get access to open-source project code, but for
those already familiar with Skyline, the schema is maintained
on GitHub in the ProteoWizard/pwiz repository [82] within
the pwiz_tools directory where the Skyline code is stored
[83]. Skyline schema files follow a naming convention:
Skyline_version.xsd.

library(xml2)

csf_art_mat <- read_xml(file.path("data","gRED",

"CSF_Biomarkers_Artificial_Matrix.sky"))

sky_schema <-

read_xml(file.path("schema","Skyline_3.73.xsd"))

xml_validate(csf_art_mat, sky_schema)

[1] TRUE

attr(,"errors")

character(0)

The output of the validation step is TRUE, which means that
the Skyline document file follows the specifications given in
the 3.73 schema. This validation step should be used when
using XML files with Bioconductor library functions, not just
when parsing manually. Most of the library functions that
handle XML files will expect the file to meet at least some
level of the specification, and some will generate errors if the
file is incomplete or not valid. Depending on the library used,
the error messages generated from unexpected XML input
can range from simple validation failure messages to cryptic
messages or even crashing the R session.
The read_xml() function returns the entire XML document.
Both the data and the schema are XML documents and are
read using the same method.

The “artificial matrix” file has been read into art_mat, but it is
not in a very usable state yet. The XML document returned by
read_xml() is a list of lists where the items in the lists are
xml_node objects. The approach I recommend for navigating
and extracting information from XML is called XPath, and it
is the query language used by xml2. There are several
functions in xml2 to locate and return nodes in an XML
document.
First, I want to create a tibble containing all of the
information about the proteins described in the Skyline
document. Looking at the text of the schema of the XML file,
you can see that this document contains several attributes.
Looking at the raw XML text, you can see that the attributes
of the <protein> element match the schema:

<protein

 name="P68082|MYG_HORSE"

 description="Myoglobin - Equus caballus (Horse)."

 accession="P68082"

 gene="MB"

 species="Equus caballus (Horse)"

 preferred_name="MYG_HORSE"

 websearch_status="X#UP68082"

 auto_manage_children="false">...

</protein>

The first protein described in the document shows that the
accession number is stored as an attribute of the <protein>
element. Figure 3.3 shows that except for the attribute name,
almost all of the other attributes of a protein are optional

(dashed-line boxes). That means in any particular document
the only requirements are the inclusion of an attribute called
name and a single element called sequence.

Figure 3.3 XML schema describing the Skyline

protein element.

My goal is to extract all of the proteins into a tibble, with
each attribute being represented in a column. Now I know
some will be present and some might be missing, even in a
data file that is valid according to the schema.
Part of the xml2 package includes functions that perform
queries using the XPath language [84]. XPath is a powerful
and complex language, and for this example, I’m only going
to use a small part of what’s available. In xml2, the function
xml_find_all() takes as input, the XML document parsed by
the read_xml() function and a string representing an XPath
query. It will return an xml_nodeset for all the nodes that
match the query string. For my purposes, I only need the
//node pattern and the name of the nodes I want to match.
The // prefix says to match all the descendants of the root
node. In this case, there are multiple instances of <protein>
that are descendants of <srm_settings>.

prot <- xml_find_all(csf_art_mat, "//protein")

Now the prot object is an xml_nodeset containing all of the
<protein> nodes. The attributes of a node can be accessed
using the xml_attrs() function. The only required child node
of <protein> is <sequence>, and I’d like to include the
sequence in the table along with the other metadata. Since
<sequence> is an element, its contents are accessed using the
xml_text() function.
Protein sequences are represented as a string with white
space, newlines, and, in the case of Skyline files, some extra
spaces that need to be removed. So before creating the table,
it’s worth it to clean up the sequence strings as much as
possible.

seq <- xml_find_all(csf_art_mat, "//sequence") |>

 xml_text() |>

 str_trim() |>

 str_replace_all("\\n","") |>

 str_replace_all(" ", " ")

Now a tibble can be created that combines the protein
attributes, unnested into columns, combined with the
sequence string.

prot_attrs <- tibble(attrs = xml_attrs(prot), seq=seq)

|>

 unnest_wider(attrs)

prot_attrs |>

 head(5)

A tibble: 5 x 9

name description accession gene species

preferred_name websearch_status

<chr> <chr> <chr> <chr> <chr> <chr>

<chr>

1 P68082|MY~ Myoglobin ~ P68082 MB Equus ~

MYG_HORSE X#UP68082

2 sp|P02768~ Serum albu~ P02768 ALB Homo s~

ALBU_HUMAN X

3 sp|P05067~ Amyloid be~ P05067 APP Homo s~

A4_HUMAN X

4 sp|P02649~ Apolipopro~ P02649 APOE Homo s~

APOE_HUMAN X

5 sp|P36222~ Chitinase-~ P36222 CHI3~ Homo s~

CH3L1_HUMAN X

i 2 more variables: auto_manage_children <chr>, seq

<chr>

In this code chunk, the attrs column of the prot_attrs table
is a list of named character vectors. Since the names are the
same for all the character vectors returned by xml_attrs(),

then the unnest_wider() function turns each character vector
name into a new column name.
When reading XML files, you will usually have to deal with
elements and attributes that are optional. In the schema for
Skyline, the only required attribute is name. If the optional
accession attribute is missing in any of the nodes, the column
will be created, but the entry for that row will be NA. Looking
at the schema for Skyline, it appears that most elements and
attributes are optional. That means that if you want an entry
for any missing elements or attributes, you have to decide on
a way to replace them or declare them NA.
In this example, I’d like to use the accession value as a
unique identifier that can be used to join tables together. So
while the file we’ve read so far seems to have an entry for
accession for every protein, you cannot be sure that will
always be true for every file you read. A block of code that
creates an accession value that cannot be in UniProt can be
used if you want to use accession as a key for joins.

accession is an optional attribute will become NA if

missing

replace any NA values unique value that does not

match the UNIPROT

specification, but can be used as a key for join()

for(i in 1:length(prot_attrs$accession)) {

 if(is.na(prot_attrs$accession[i])) {

 prot_attrs$accession[i] = sprintf("ZYZZY%04d",

i)

 }

}

Some might consider using the for statement to loop in R
non-idiomatic. Perhaps it is, since you should try and
vectorize everything you can in R. However, for a simple task
like making up a value for accession, the for-loop is more
understandable and faster than some might think. When you

are writing code that uses another language like XPath or
complex formatting, simple flow control syntax is easier to
understand for others and your future self.
It is up to you how robust you want to make handling the
optional elements for a particular file. The schema makes it
clear which elements and attributes you can count on being
there if you validate the file against its schema, but some
attributes and elements, being optional, maybe in one
specific file and missing from another, and both are valid.
Also remember that the order of attributes and elements is
not ensured by the schema, so you can’t count on them being
in any specific order when you read them.
Up to this point, I’ve created lists of XML nodesets by using
only the //node XPath expression. XPath is a rich query
language, and for reading some XML files, you may have to
take advantage of some of its advanced features. For this
example, I’m taking the approach of minimizing the amount
of non-R programming you have to do and working with
slightly messier input to create tidy data. It is possible, even
likely, that with all types of data, advanced techniques in
XPath, SQL, or some other query language could reduce the
amount of R programming you have to do. For most XML
files, and in mass spectrometry, the basic approach of this
book is to depend mostly on R, not query language

functionality. The only parts of the XPath expression
language I will use are shown in Table 3.3. You may find that
you have to dig a little deeper into the query language you
use for some types of files or data sources, but in general, it
will make your code more reusable and more resilient if you
let R do most of the work using only the necessary features of
a secondary language, even if that leads to more lines of R
code.

TABLE 3.3

Some basic XPath expression syntax.

Expression Description Example

//node Any descendants
that match node
name

//protein

/node Matches direct
descentants of
node name

//protein/peptide

@ Selects an
attribute of a node

//protein/@name

[] Selector
constraint.
Matches node that
meet conditions

//protein[@species=“Homo
sapiens”]

| Union operator.
Join results

//@accession | //@sequence

pattern <- paste(

 "//protein/@name",

 "| //protein/@accession",

 "| //peptide/@sequence",

 "| //peptide/precursor/@charge",

 "| //peptide/precursor/@isotope_label",

 "| //peptide/precursor/transition/@fragment_type",

 "| //peptide/precursor/transition/precursor_mz",

 "| //peptide/precursor/transition/product_mz")

srm_list <- xml_find_all(csf_art_mat, pattern)

The first step is to build a query string that will match the
data elements and attributes in the XML file that I want to
extract. The xml_find_all() function will return a list of

nodes that match an XPath pattern. The XPath pattern is
constructed to return all the elements and attributes
specified in the order they are found. The first item in the
node list will be the first name attribute from the first protein
node, followed by optional attributes: the accession number,
the peptide sequence, the peptide precursor by the fragment
type, and then the precursor and product m/z values. The
xml_find_all() function finds all the matches for these
patterns, joins them in a list, adds them to the result list, and
then moves to the next node until it hits the end of the file.
The result will be a long list of nodes with the accession
attribute beginning each section. Once this list is created in
the srm object, it can be parsed out into a tibble. There are
several ways to iterate over a list like this in R. For this first
example, I will use a simple repeat loop to iterate over the
node list created by the query of csf_art_mat. Using loops like
for, while and repeat used to be considered slow in R, but
over the years, they have been so optimized that they can be
used without much performance loss. As mentioned
regarding the for-loop, you should use the vectorized
functionality of R if you can. Vectorized approaches are
usually faster and are sometimes easier to read, but they add
complexity to your programming by hiding the looping
process. If you want your code to have maximum readability,
sometimes standard control structures are the best way to
create loops.
Next, I will loop through the node list, loading each value into
a variable that will be assigned to a value in a row of a table.
The goal is to end up with a table that has every transition
that is described in the file in a row. That will mean repeating
some column values if there is more than one transition per
protein. Each section of the list begins with the protein name,
which is a required value. That means when a new name is
found, you know that you are parsing a new protein section.
To start, create the tibble that will be populated in the loop.

srm <- tibble(

 accession = character(),

 sequence = character(),

 precursor_charge = numeric(),

 isotope_label = character(),

 fragment_type = character(),

 precursor_mz = numeric(),

 product_mz = numeric()

)

Next loop through the srm_list and extract each SRM
description.

i = 1

repeat {

 if(i > length(srm_list)) {

 break

 }

 node = srm_list[i]

 # Set default values for optional attributes and

elements

 # Here only the accession and isotope_label

attributes are handled

 # Expand this section if new files have missing

attributes/elements

 if(xml_name(node) == "name") {

 accession =

prot_attrs$accession[prot_attrs$name == xml_text(node)]

 isotope_label = "light"

 i = i + 1

 next

 }

 row_done = FALSE

 while(xml_name(node) != "name") {

 if(xml_name(node) == "accession") {

 accession = xml_text(node)

 } else if(xml_name(node) == "sequence") {

 sequence = xml_text(node)

 } else if (xml_name(node) == "charge") {

 precursor_charge = xml_integer(node)

 } else if (xml_name(node) == "isotope_label") {

 isotope_label = xml_text(node)

 } else if (xml_name(node) == "fragment_type") {

 fragment_type = xml_text(node)

 } else if (xml_name(node) == "precursor_mz") {

 precursor_mz = xml_double(node)

 } else if (xml_name(node) == "product_mz") {

 product_mz = xml_double(node)

 row_done = TRUE

 }

 if(row_done == TRUE) {

 srm <- add_row(srm,

 accession = accession,

 sequence = sequence,

 precursor_charge =

precursor_charge,

 isotope_label = isotope_label,

 fragment_type = fragment_type,

 precursor_mz = precursor_mz,

 product_mz = product_mz

)

 row_done = FALSE

 isotope_label = "light"

 }

 i = i + 1

 if(i > length(srm_list)) {

 break

 }

 node = srm_list[i]

 next

 }

}

In addition to the accession attribute, the isotope_label is
also optional. In the case of accession, the missing value was
replaced based on my wanting to use accession as a key in
joining tables. The isotope_label attribute is also optional,
but in the context of Skyline, if it is missing, the default value
is light, and the value was assigned to the default and only
reassigned if the attribute was present in the file. Again, it is
up to you to decide how robustly you would like to handle
missing values. When you know the default values or know
you want to use a column in a certain way, you can use a
range of methods for dealing with missing values.

str(srm)

tibble [333 x 7] (S3: tbl_df/tbl/data.frame)

$ accession : chr [1:333] "P68082" "P68082"

"P68082" "P68082" ...

$ sequence : chr [1:333] "HGTVVLTALGGILK"

"HGTVVLTALGGILK" "HGTVVLTALGGILK"

 "HGTVVLTALGGILK"

...

$ precursor_charge: num [1:333] 2 2 2 2 2 2 2 2 3 3

...

$ isotope_label : chr [1:333] "light" "light"

"light" "light" ...

$ fragment_type : chr [1:333] "y" "y" "y" "b" ...

$ precursor_mz : num [1:333] 690 690 690 690 693

...

$ product_mz : num [1:333] 985 886 772 494 992

...

3.4 Result Data

Result data from a mass spectrometry experiment can be
either qualitative or quantitative. In the Skyline example
above, I’ve shown how to extract qualitative results
(transition information on proteins and peptides found in a
sample) from an XML file. Most result data can be read either
as a text file with known separators or as an XML file using
an XML library and XPath (Table 3.4).

TABLE 3.4

MS experimental result file types.

Data type Name Syntax Usage

MS results mzIdentML XML HUPO molecular
identification

mzTab TSV HUPO generalized result
format

Metabolite
ID

MAF TSV metaboBank metabolite
assignment file

Results can also be stored in open standard formats, for
which packages are available for reading that specific format.
For protein and peptide search (identification) results, the
HUPO-PSI mzIdentML XML format is available for many
investigations and deposited with data files supporting
publications. As mentioned earlier, there are several
Bioconductor packages that can be used to parse
standardized XML files. Depending on your goal, mzIdentML
files can be read with several packages. In the next example,I
will use the PSMatch package to read mzid files. Another
common result format is the HUPO-PSI format called mzTab.
Files in the mzTab format can be read with functions in
MSnbase introduced earlier or directly as a TSV file. For
metabolite identification, the metabolite assignment file
(MAF) format [85] from the MetaboBank repository [86] is
the recommended format [87]. The MAF file also uses the
TSV format, which can be read directly using the dplyr
function read_tsv().
To show how to read result data as well as access raw data
formats, I will use the data deposited from the publication
“Unbiased proteomics, histochemistry, and mitochondrial
DNA copy number reveal better mitochondrial health in
muscle of high-functioning octogenarians” by Ubaida-Mohien

et al. [88]. The authors of this paper did an outstanding job of
depositing a very complete record of the data they used to
perform data analysis. The data was deposited in the
MassIVE repository with the identifier MSV000086195 and
can be downloaded from
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?

accession=MSV000086195.
For the examples in this chapter, I created a directory,
MSV000086195, under the large-data directory in the working
directory for R and downloaded the contents from MassIVE.
It is sometimes useful to separate very large files in their own
directory, especially if you choose to use a source code
repository to manage your analysis. Most source code
repositories have file size limits, so data files under the limit
can be included with the code files. Files above the size limit
can be placed in a folder that is marked for exclusion from
source code management. This doesn’t detract from the
reproducibility of your work if you are using a source code
management system because the data is available in the data
repository and can be accessed separately. One word of
caution: many studies in MassIVE contain enormous amounts
of data, especially when the vendor’s raw data is included, as
is the case in this example. For this reason, you may want to
consider which parts of the deposited data you choose to
download. For the examples in this chapter and the next, I
did not download the vendor raw files, which represent
hundreds of gigabytes of data.

3.4.1 Molecular Identification

In this example, I will explore using tidy methods to analyze a
simple aspect of a proteomics experiment based on one
aspect of the Ubaida-Mohien 2022 study. The primary goal of
the investigation was to measure the differential expression
of proteins extracted from the muscle cells of two groups (see
the manuscript for details). The simplified description of the

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession=MSV000086195

method is that three batches of extracts were prepared,
enzymatically digested, and then mass tag labeled to allow
pooling and relative between-group protein quantification.
The authors used the tandem mass tag (TMT) 10-plex [89] kit
for labeling. In the TMT approach, proteins from a single
specimen are enzymatically digested and then labeled with a
mass tag such that peptides from a specific specimen can be
identified by reporter fragments in their MS2 spectra. In this
experiment, the authors combined 10 different digested
extracts into a single sample for analysis. Key to the TMT
approach is that each of the 10 tags has the same
monoisotopic mass when reacted with the digested peptides.
Thus, they modify the molecular weight of a specific peptide
by the same mass shift regardless of which specimen they
came from. That means that the peptide can be selected in
the MS1 spectrum and then fragmented. In the MS2
spectrum, each of the 10 different tags is fragmented along
with peptide to produce a unique isotopically labeled reporter

ion at a low m/z value (126.127726–131.144499). Since the
labeled peptides from different specimens have the same
molecular weight modification, they show up in the MS1
spectrum as a single peptide with a modified m/z value
(+229.162932). This allows data-dependent acquisition to be
used to select the single m/z value for fragmentation,
producing an MS2 spectrum that can be used for peptide
identification using a database search and which includes the
signals for the reporter ions, indicating which specimen the
peptide came from, with the added benefit that the reporter
ion intensities indicate the relative quantity of the peptide for
each of the 10 individual specimens in the pooled sample.
Because of the multiple stages of chromatography, multiple
sample-handling steps, and the very long run time of the final
chromatography step (195 minutes), there is the potential for
variability in many parts of the experiment. To estimate the
variability due to the pre-analytical and analytical steps, the
authors chose to spike each digested extract with an internal

control. In this case, they added a predigested protein
standard (bacterial beta-galactase [90]). The variation in the
signals generated by the control peptides reflects the
expected between-subject measurement variation and is not
related to biological effect. Ideally, these signals should be
constant across all samples. The intensity of each of these
fragments should also be consistent across all of the internal
control peptides. Internal controls are critically important for
experimental processes as complex as those described in the
Ubaida-Mohien 2022 manuscript and its predecessor [91].
I will start with the protein search step performed by the
original research team, but this time, focusing only on the
internal control protein. This will allow you to see how
identification (qualitative) results and quantitative results
from both MS1 and MS2 data can be wrangled into tidy
structures and the various techniques that can be used with
multimode analysis pipelines in a wide range of mass
spectrometry applications.
In the method description for the study, the authors state
that the MS2 data from their experiment was searched with
the programs Mascot and X! Tandem against the SwissProt
Human sequences from UniProt appended with 115
contaminants. Further, the peptides matching contaminants
were removed from the results. A common source of potential
contaminants is the common Repository of Adventitious
Proteins (cRAP) database from the Global Proteomics
Machine project [92]. This database contains 115 sequences
and includes the bacterial beta-galactase internal control.
With the peptides from beta-galactase removed, performing
analysis on the internal control is not possible using the
output provided in the repository. However, since the authors
deposited the extracted MS2 spectra, the internal control
peptides can be found using the beta-galactase sequence and
the X! Tandem search engine configured as described in the
manuscript. X! Tandem can be configured to produce
mzIdentML files which include only the highest confidence

peptide-spectrum matches for the internal control, allowing
qualitative and quantitative analysis of the control.

3.5 Example of Wrangling Data:

Identification Data

There are several ways to read mzid files in various packages
in Bioconductor. In this example, I will use the PSMatch library
and the PSM() function. PSM() generates a specialized data
structure of the class PSM from which identification
information can be extracted into a tidy format.
The data acquisition for MSV000086195 was performed using
a Q Exactive HF mass spectrometer (Thermo Scientific, San
Jose, CA). As shown in Table 3.5, Thermo instruments
generate a proprietary data file, which must first be
converted to an open format before it can be used with R and
other tools.

TABLE 3.5

Vendor raw data formats.

Name Syntax Usage

d/ proprietary Data from Agilent instruments
raw/ proprietary Data from Waters instruments
RAW proprietary Data from Thermo instruments
wiff +
wiff.scan

proprietary Data from Sciex instruments

t2d proprietary Data from Sciex TOF instruments
yep,baf,flex proprietary Data from Bruker TOF

instruments

The protein used for this example is an internal control and is
known to be present in every sample prior to labeling,

fractionation, chromatography, and the data-dependent
acquisition (DDA) mass spectrometer data collection.
Because the internal control was predigested, what can be
observed is the batch-to-batch variability in labeling,
fractionation, chromatography, and mass spectrometer
sensitivity and performance of the DDA step.
The objective of this example is to use a peptide identification
program to find the internal control peptides in the samples
provided by the authors in the MassIVE repository. By setting
the threshold for identification to an extreme value and using
only the internal control protein sequence for the search, the
resulting output of the search is extremely small compared to
the results from searching a full proteome as was done in the
publication.
The method for converting the Thermo vendor files to open
formats for use in search and analysis tools was the popular
open-source program MSConvert [13]. More details on how
to convert various vendor formats to an open format are
given in the Global Natural Products Social Network (GNPS)
[93] documentation site [94]. Notice that most vendor data
file types are supported by MSConvert. If your file type is not
supported, you can contact the ProteoWizard team via their
GitHub site [95] and submit an issue, or join the GNPS
community [96] where more help is available.
Using MSConvert, Thermo raw data files can be converted to
a variety of open file formats. Table 3.6 shows some of the
useful open data formats in mass spectrometry.

TABLE 3.6

Open data formats for raw mass spectrometry data.

Name Syntax Usage

MGF Text Mascot generic format for MS2
peak lists

JCAMP-DX Text Text representation of MS data
MSP Text NIST spectrum/structure library

format
ANDI-
MS/netCDF

netCDF Cross-platform binary format for
MS data

mzML XML HUPO open format for raw MS
data

mzXML XML ISB open format for raw MS
data

imzML XML +
binary

Open binary format for imaging
MS data

mz5 HDF5 Open binary format for raw MS
data

3.5.1 Open Raw Data Formats

One of the oldest and most difficult challenges in developing
programs for mass spectrometry data analysis is how to make
the data acquired by an instrument accessible and complete.
The formats proposed and used have followed the
development of data representation of the computers that
control analytical instrumentation.
Early computer systems tended to use a record-oriented
approach to data storage, and that is reflected in the early
mass spectrometry formats like JCAMP-DX [97, 98]. With the
advent of networked computers, file formats had to be

transmissible over networks and readable by computers with
different internal data representations. Formats like netCDF
were developed to accomplish portability and allowed the
creation of formats for mass spectrometry using a portable
binary approach. With the development of the World Wide
Web, the format of the HTML led to a more formalized
version for data representation called the XML. XML is the
most common open format, but being a text-based format
means it has limitations when data sizes get large and when
random access to elements is needed. The evolution from
netCDF to HDF5 means that it is now possible to store very
large amounts of data in a portable binary format, and at
least one format for mass spectrometry has been created
using this latest approach. All of the open formats have
advantages and disadvantages, and many of the formats
shown in Table 3.6 have R packages to support the reading
and writing of these files. Depending on your application, you
may have to read any of several file formats. If you are
writing files, you can choose which formats best suit your
needs or the needs of your audience.
For proteomics and other applications, the .mgf file format
[99] is extremely useful. It is a simple text file that can be
read line by line. Each spectrum starts with a BEGIN IONS
record and ends with END IONS. Between these records, a set
of embedded search parameters can be provided, which are
followed by the peak list as shown below.

Example 3.1 MGF format for a spectrum

BEGIN IONS

TITLE=File:"ScltlMsclsMAvsCntr_Batch1_BRPhsFr29.raw"

RTINSECONDS=0.79676478

PEPMASS=752.448056103694 367438.5

CHARGE=2+

117.4452527 760.5017700195

117.447868 0.0

127.1198491 0.0

127.125235 8669.3916015625

127.1313907 2595.0625

127.1352261 0.0

128.1252025 0.0

128.1283167 1025.9385986328

128.1321975 0.0

...

1349.632791 0.0

1349.765885 3455.4172363281

1349.924943 0.0

1499.052612 0.0

1499.177249 842.9288330078

END IONS

...

BEGIN IONS

TITLE=File:"ScltlMsclsMAvsCntr_Batch1_BRPhsFr29.raw"

RTINSECONDS=14699.6562

PEPMASS=600.3286 8715.2294921875

CHARGE=4+

111.2126462 597.8501586914

111.2150581 0.0

119.9709253 0.0

119.973747 530.4479980469

119.9763741 0.0

...

907.7844305 0.0

907.8431639 804.5353393555

END IONS

Another text file format that is commonly found outside of the
-omics ecosystem is JCAMP-DX [97, 98]. JCAMP-DX is also a
plain text format used to store spectra data for many
different types of instruments besides mass spectrometers, as
shown below.

Example 3.2 JCAMP-DX format for a spectrum

##TITLE= 2-Chlorphenol

##JCAMP-DX= 5.00 $$ ISAS JCAMP-DX program (V.1.0)

##DATA TYPE= MASS SPECTRUM

##DATA CLASS= PEAKTABLE

##ORIGIN= H. Mayer, ISAS Dortmund

##OWNER= COPYRIGHT (C) 1993 by ISAS Dortmund, FRG

##SPECTROMETER/DATA SYSTEM= Finnigan MAT Magnum

##INSTRUMENTAL PARAMETERS= LOW RESOLUTION

##.SPECTROMETER TYPE= TRAP $$ ion trap spectrometer

##.INLET= GC $$ gas chromatograph as

inlet

##.IONIZATION MODE= EI+ $$ electron impact

ionization with positiv polarity

##.BASE PEAK= 128

##.BASE PEAK INTENSITY= 687729 COUNTS

##.RIC= 3063043

##XUNITS= M/Z

##YUNITS= RELATIVE ABUNDANCE

##NPOINTS= 26

##PEAK TABLE= (XY..XY)

50, 5.84

51, 9.55

...

130, 32.45

131, 2.13

##END=

The NIST .msp library format is designed so that each record
in the files has chemical names, structures, and other
chemical information, and an associated spectrum. The

objective is to allow an unknown spectrum to be compared to
a known spectrum and, if it is a close match, to suggest the
chemical identity. Alternatively, given a chemical structure or
name, the observed spectra for that compound can be
located.

3.6 Wrangling Multiple Data Sources

In the Ubaida-Mohien 2022 study, the manuscript states that
MGF files were extracted from the raw file using MSConvert
and deposited in MassIVE. Each MGF file represents an MS
level 2 spectrum that was generated for purposes of peptide
identification. Many peptide search programs, including X!
Tandem, can read MGF files directly. Others can read a
variety of formats, so the input format you need for a search
may range from using the instrument vendor formats directly
to an XML format or the simpler text formats list MGF. In
addition to the peak lists (.mgf) used for peptide searching,
all of the vendor data (.raw) and the open format raw data in
the mzML format were deposited along with the identification
data. In the next chapter, I will use this data to introduce
some useful exploratory data analysis of the data in this
study. To help with that exploration, I will create a data table
that combines a subset of the result data and some
information from the raw data to help answer some basic
questions about the data set, specifically on the subject of the
internal controls.
The approach taken for all tasks is to build a tidy
representation of the application-specific data and use that to
guide further analysis. In this case, I want to gather and tidy
information on the peptides of the internal control that were
found. Of primary interest are the search scores (the quality
of the match) and information on both the MS1 and MS2
spectra that were used for the identification. I will construct
a simpler table from the 30+ variables returned by the PSM()

function from the PSMatch package. To do this, the program
will have to extract elements from the identification data (in
the .mzid files) along with some elements from the raw data.
The goal is to end up with a data table that can be used for
exploratory data analysis in the next chapter.
To start the example, take a look at what information is
available in the .mzid file using the PSM() function. Since this
analysis uses both searches done by X! Tandem and by
Mascot, I have set the PSM parser to mzID which is
compatible with .mzid files generated by both search engines.
Since the two work differently, they generate controlled
vocabulary terms that are specific to each engine. When
moving data from the application-specific output to the tidy
format, a translation between the engine-specific terms is
required. In the example, I have created two functions:
extract_tandem_match() and top_tandem_scans(). In Chapter 5,
I will create the Mascot-specific versions of these two
functions for reading the results from the Mascot searches
that were deposited on the repository.

library(PSMatch)

mzID_schema <-

read_xml(file.path("schema","mzIdentML1.1.0.xsd"))

result_file = file.path("large-data",

"MSV000086195","tandem_result",

"ScltlMsclsMAvsCntr_Batch1_BRPhsFr29.mzid")

if(!xml_validate(read_xml(result_file), mzID_schema)) {

 print(paste0("Invalid mzIdentML:", result_file))

 break

} else {

 all_psm <- PSM(result_file, parser = "mzID")

 id <- as_tibble(all_psm)

 names(id)

}

reading ScltlMsclsMAvsCntr_Batch1_BRPhsFr29.mzid...

DONE!

[1] "spectrumid" "scan.number.s."

[3] "acquisitionnum" "passthreshold"

[5] "rank"

"calculatedmasstocharge"

[7] "experimentalmasstocharge" "chargestate"

[9] "x..tandem.expect" "x..tandem.hyperscore"

[11] "isdecoy" "post"

[13] "pre" "end"

[15] "start" "accession"

[17] "length" "description"

[19] "pepseq" "modified"

[21] "modification" "idFile"

[23] "spectrumFile" "databaseFile"

In this code, I first checked to make sure the .mzid file
matched the mzIdentML schema and then read all of the ID
information into a base data.frame using the PSM() function.
One of the reasons for doing this is that the XML file being
read may not be valid. It is possible that the files deposited
follow a different schema than what is expected by the PSM()
function. Since no information can be extracted from an
invalid file, it’s better to check first than to let PSM() fail. For
example, I set the X! Tandem threshold expectation value
very low and search for only one (control) protein, which can
cause the program to create an empty match section in the
.mzid file. For most peptide search applications, this would be
a failure, and it might be an indication that some search
setting is incorrect. In an analysis of internal controls, which
are not expected to be in every fraction for every batch, it’s a
realistic outcome. Depending on the search program you use,
different results might occur for the situation where no
spectra meet the search criteria. Checking that the file exists
and that it is valid based on a specific schema is a good
precaution and suits our needs well. For every project, you
will have to decide how to handle missing data and how

robust you need to make your program in case of problems
with formats or file corruption.
If everything is in order with the identification file, the output
of the PSM() function can be converted directly to a tibble
since the PSM class extends the DataFrame class, which can be
directly coerced to a tibble. To see what classes an
application-specific class extends, the function getClassDef()
from the methods package is helpful:

getClassDef("PSM")

Class "PSM" [package "PSMatch"]

##

Slots:

##

Name: rownames nrows

elementType elementMetadata

Class: character_OR_NULL integer

character DataFrame_OR_NULL

##

Name: metadata listData

Class: list list

##

Extends:

Class "DFrame", directly

Class "DataFrame", by class "DFrame", distance 2

Class "SimpleList", by class "DFrame", distance 2

Class "RectangularData", by class "DFrame", distance 3

Class "List", by class "DFrame", distance 3

Class "DataFrame_OR_NULL", by class "DFrame", distance

3

Class "Vector", by class "DFrame", distance 4

Class "list_OR_List", by class "DFrame", distance 4

Class "ListorHits", by class "DFrame", distance 4

Class "Annotated", by class "DFrame", distance 5

Class "vector_OR_Vector", by class "DFrame", distance 5

I’d like to have a single tibble that contains only unique MS
level 2 scans for each peptide found. So, rows will have

unique values for scan.number.s.. If multiple peptide matches
occur for a single MS2 scan because of multiple modification
locations, I will keep the one with the highest value of
x..tandem.hyperscore. This lets me keep every MS2 spectrum
that contained a high-confidence match but eliminate
duplicate entries for the same spectrum. Several other
variables will be useful in exploring the entire dataset. As was
used in a previous example, I use the pattern of creating an
empty tibble defining the names and types of the columns
(variables), then append a selected tibble to the empty one to
build up a final result. This is handy when using loops to
iterate over multiple files. The empty tibble is created outside
of the loop, and the results of the calculation or selection are
appended inside the loop.
For this example, I’ve decided I want the batch number, the
fraction number, and the retention time of the matching
spectrum. These are not isolated in the output of PSM() but
they are embedded in the spectrumid string.

id$spectrumid[1]

[1] "ScltlMsclsMAvsCntr_Batch1_BRPhsFr29.49412.49412.2

File:\"ScltlMsclsMAvsCntr_Batch1_BRPhsFr29.raw\",

NativeID:\"controllerType=0 controllerNumber=1

scan=49412\" RTINSECONDS=9195.8256 "

To extract the values desired, R has a regular expression
matching function called str_match(), which takes an input
string and a regular expression pattern and returns all the
matches. Like XPath, regular expressions are a powerful tool,
and I will only scratch the surface in this book. Regular
expressions are so powerful that it is worth learning how to
use them well. For that I can recommend R for Data Science

[30, 31], and for a much deeper dive: Mastering Regular

Expressions by Friedl [100].

The batch, fraction, and retention time of an identification
can be extracted using the following patterns.

str_match(id$spectrumid[1], "_Batch(\\d+)_")

[,1] [,2]

[1,] "_Batch1_" "1"

str_match(id$spectrumid[1], "_BRPhsFr(\\d+)")

[,1] [,2]

[1,] "_BRPhsFr29" "29"

str_match(id$spectrumid[1], "RTINSECONDS=([0-9.]+)")

[,1] [,2]

[1,] "RTINSECONDS=9195.8256" "9195.8256"

The str_match() function returns a character matrix. The first
column is the complete match, followed by a column for each
capture group. The capture groups are placed in () in the
pattern string. The batch number is found by looking in the
string for “_Batch” followed by one or more digits. The batch
number is captured with the pattern \\d+, which matches one
or more digits. The same idea and capture pattern is used for
the fraction number. Since the retention time is a positive
floating point number, the capture pattern is [0-9.]+, which
matches one or more of the characters inside the [] symbols.
In this case 0-9 means any digit between 0 and 9, and the .
matches the decimal place symbol.
The values of batch, fraction, and retention time can then be
obtained from the [1,2] position of the output of str_match().
More robust patterns can be written, for example, to allow
for scientific notation and other types of numbers and

patterns. I tend to keep patterns as simple as possible
expanding complexity only when the pattern I’m matching
becomes demanding. When you use regular expressions, you
are writing in a second language (regex), not R, and while it
is powerful, it is not easy to read for everyone. To make
programs as easy to read as possible, my advice is to limit the
complexity of secondary languages. This will especially be
true for extracting data from databases using languages such
as SQL.
To simplify a program like this, I usually isolate helper
functions that are used in multiple places first. Again, I am
going to use the for() loop rather than use a parallel
approach to make the operation easier to understand and
debug. Many people take the approach that R is simply a
scripting language and often don’t pay attention to some of
the useful ideas from basic program design. The result can be
a lot of repeated code generated by cutting and pasting.
While it is usually not worth the time to ensure your R code
meets professional software engineering standards, it is
worth taking enough time to make sure that at least you can
understand the program later and that others don’t have too
much trouble reading your programs. That is the approach
you will see throughout this book. I am not trying to use all of
the latest features of either Bioconductor or the tidyverse
packages, but I do try to make programs easy to read (at
least for my future self).
Based on using the regular expression method, the tibble I
intend to build is:

tibble(

 batch = numeric(),

 fraction = numeric(),

 seq = character(),

 charge = numeric(),

 ex_mz = numeric(),

 calc_mz = numeric(),

 match_score = numeric(),

 exp_score = numeric(),

 scan = numeric(),

 rt = numeric(),

 mods = character(),

 base_filename = character()

)

A tibble: 0 x 12

i 12 variables: batch <dbl>, fraction <dbl>, seq

<chr>, charge <dbl>,

ex_mz <dbl>, calc_mz <dbl>, match_score <dbl>,

exp_score <dbl>, scan <dbl>,

rt <dbl>, mods <chr>, base_filename <chr>

To put the program together, I create functions to perform
the actions that I will need repeatedly later. First, a function
to validate the XML file against the schema file.

mzID_valid <- function(mzID_filename, id_schema) {

 doc <- read_xml(mzID_filename)

 xml_validate(doc, id_schema)

}

The empty_psm() function creates an empty tibble to hold the
peptide-spectrum match data in order to implement an
accumulator design pattern. The idea of design patterns was
made popular by the book Design patterns: Elements of

reusable object-oriented software [101]. Design patterns are
simply well-established ways of getting things done in
software. Design patterns, in general, are outside the scope

of this book, but the accumulator pattern is so low-level and
basic that it will probably be useful in your analysis and
commonly found in code you might read. The idea used here
is simple: create a data structure to hold a single observation
– like a row in a table – and then accumulate these into a
table containing many observations.

empty_psm <- function() {

 tbl_item <- tibble(

 batch = numeric(),

 fraction = numeric(),

 seq = character(),

 charge = numeric(),

 ex_mz = numeric(),

 calc_mz = numeric(),

 match_score = numeric(),

 exp_score = numeric(),

 scan = numeric(),

 rt = numeric(),

 mods = character(),

 base_filename = character()

)

 tbl_item

}

Create a function to extract PSM data so it can be added to a
table:

extract_tandem_match <- function(psm) {

 m1 = str_match(psm$spectrumid, "_Batch(\\d+)_")

 m2 = str_match(psm$spectrumid, "_BRPhsFr(\\d+)")

 m3 = str_match(psm$spectrumid, "RTINSECONDS=([0-

9.-]+)")

 tbl_item <- tibble(

 batch = as.numeric(m1[1,2]),

 fraction = as.numeric(m2[1,2]),

 seq = psm$pepseq,

 charge = psm$chargestate,

 ex_mz = psm$experimentalmasstocharge,

 calc_mz = psm$calculatedmasstocharge,

 match_score = psm$x..tandem.hyperscore,

 exp_score = psm$x..tandem.expect,

 scan = psm$scan.number.s.,

 rt = as.numeric(m3[1,2]),

 mods = psm$modification,

 base_filename =

str_split_1(psm$spectrumFile,".mgf")[1]

)

 tbl_item

}

A feature of the X! Tandem search program is that in its
output it reports when a peptide has been modified in
different locations.

top_tandem_scans <- function(all_id) {

 all_id <- all_id |>

 arrange(scan.number.s.)

 pep_tbl <- empty_psm()

 pep_score_best <- 0.0

 curr_scan <- all_id[1,]$scan.number.s.

 pep_tbl <- empty_psm()

 for(i in 1:length(all_id$pepseq)) {

 peptide <- all_id[i,]

 pep_scan <- peptide$scan.number.s.

 if(pep_scan == curr_scan) {

 if(peptide$x..tandem.hyperscore >

pep_score_best) {

 pep_best <-

extract_tandem_match(peptide)

 pep_score_best <-

peptide$x..tandem.hyperscore

 }

 next

 } else {

 pep_tbl <- bind_rows(pep_tbl, pep_best)

 pep_best <- extract_tandem_match(peptide)

 curr_scan <- peptide$scan.number.s.

 pep_score_best <-

peptide$x..tandem.hyperscore

 }

 }

 pep_tbl

}

Now you are ready to iterate through all of the output files
from the study and build the tidy data analysis table. There
does not seem to be a way to change the default setting of
the PSM() function when using the mzID parser, which defaults
to verbose. This might crop up in other application-specific

functions you use. If you want to silence them, the generic
way is to wrap the expression in an
invisible(capture.output(...)) statement. This captures the
output of hidden print() type statements but passes the
actual value of the expression back out to the rest of the
code. In Chapter 5, I’ll show how to perform the same
process using the mzID() function directly, and in the example
in Section 5.3.4, I show how to silence a particular function,
while the method shown here will work for any function you
want to silence.

get the schema for the mzML files

mzID_schema <-

read_xml(file.path("schema","mzIdentML1.1.0.xsd"))

get a list of all the mzIdentML files generated by X!

Tandem

result_files = list.files(

 file.path("large-data",

"MSV000086195","tandem_result"),

 pattern=".mzid")

create an empty tibble to accumulate desired matches

all_top_psm <- empty_psm()

n_iterations <- length(result_files)

pb <- progress_estimated(n_iterations)

read and extract data from each mzIdentML file using

a loop

for(filename in result_files) {

 full_path = file.path("large-data",

"MSV000086195","tandem_result",

 filename)

 if(!mzID_valid(full_path, mzID_schema)) {

 next

 }

 invisible(capture.output(all_psm <- PSM(full_path,

parser = "mzID")))

 id <- as_tibble(all_psm)

 # if the table made by PSM() is empty skip to the

next file

 # otherwise keep only the peptide matches which

contain at least one

 # TMT6plex modification (229.1629 Da)

 if(nrow(id) < 1) {

 next

 } else {

 id <- dplyr::filter(id,

str_detect(modification, '229.1629'))

 }

 # the top_scans() function returns the highest

scoring unique MS2

 # spectra, which are added to the table

 kept_peptides <- top_tandem_scans(id)

 all_top_psm <- bind_rows(all_top_psm,

kept_peptides)

 rm(all_psm)

 rm(id)

 update_progress(pb)

}

Sort the table by sequence, batch, fraction, and retention
time, and then print the output:

all_top_psm <- arrange(all_top_psm, seq, batch,

fraction, rt)

print(all_top_psm)

A tibble: 220 x 12

batch fraction seq charge ex_mz calc_mz

match_score exp_score scan rt

<dbl> <dbl> <chr> <dbl> <dbl> <dbl>

<dbl> <dbl> <dbl> <dbl>

1 2 8 AMGNSL~ 2 756. 756.

59.3 4.6 e-12 25054 5107.

2 2 8 AMGNSL~ 3 504. 504.

39.5 4.1 e- 7 25125 5119.

3 3 9 AMGNSL~ 2 756. 756.

59 5.6 e-12 25185 5314.

4 3 9 AMGNSL~ 3 504. 504.

38.1 9.3 e- 7 25263 5329.

5 1 5 APLDND~ 2 844. 844.

54.5 1.80e-10 21516 4796.

6 2 3 APLDND~ 2 844. 844.

46.7 5 e- 9 21982 4592.

7 2 3 APLDND~ 2 844. 844.

42.3 6.5 e- 7 22560 4673.

8 2 9 APLDND~ 2 844. 844.

53.8 2.70e-10 20725 4459.

9 3 4 APLDND~ 2 844. 844.

46.6 5.50e- 9 23423 4859.

10 3 5 APLDND~ 2 844. 844.

43.1 1.20e- 7 21639 4744.

i 210 more rows

i 2 more variables: mods <chr>, base_filename <chr>

The last step in building up this data table is to read the raw
data in order to obtain the precursor scan number (MS level
1) for the MS level 2 spectra that were searched from the
.mgf files, since the .mgf file format does not give the
precursor scan number for the spectrum.
As mentioned in Section 2.1.2, I will use the MSnbase package
to read raw data files based on the file names I extracted
from the .mzid files and stored in the base_filename column of
the all_matches table. In the data that were deposited for
MSV000086195, there are mzML format files available in the
ccms_peak folder. The readMSData() function can read many
open format file types and supports multiple file types and
both in-memory and on-disk storage [14].

library(MSnbase)

get the raw filename from the all_top_psm table

created above

filename <-

paste0(all_top_psm$base_filename[1],".mzML")

full_path <- file.path("large-data",

"MSV000086195","ccms_peak",

 filename)

spectra <- readMSData(full_path, mode="onDisk",

verbose=FALSE)

The readMSData() function returns an object of type
OnDiskMSnExp when used with the mode="onDisk" argument:

class(spectra)

[1] "OnDiskMSnExp"

attr(,"package")

[1] "MSnbase"

Since you may want other data items from the spectrum, it
can be useful to use the methods() function from the utils
package to list the methods associated with the OnDiskMSnExp
class.

methods(class="OnDiskMSnExp")

[1] [[[

$

[4] $<- abstract

acquisitionNum

[7] addIdentificationData all.equal

analyser

[10] analyserDetails analyzer

analyzerDetails

[13] assayData bin

bpi

[16] centroided centroided<-

chromatogram

[19] classVersion classVersion<-

clean

[22] coerce coerce<-

collisionEnergy

[25] combineSpectra compareSpectra

description

[28] detectorType dim

dirname

[31] dirname<- estimateMzResolution

estimateNoise

[34] expemail experimentData

expinfo

[37] exptitle extractPrecSpectra

fData

[40] fData<- featureData

featureData<-

[43] featureNames featureNames<-

fileNames

[46] filterAcquisitionNum filterEmptySpectra

filterFile

[49] filterIsolationWindow filterMsLevel

filterMz

[52] filterPolarity filterPrecursorMz

filterPrecursorScan

[55] filterRt fromFile

fvarLabels

[58] fvarMetadata header

idSummary

[61] initialize instrumentCustomisations

instrumentManufacturer

[64] instrumentModel ionCount

ionSource

[67] ionSourceDetails isCentroided

isCurrent

[70] isolationWindow isolationWindowLowerMz

isolationWindowTargetMz

[73] isolationWindowUpperMz isVersioned

length

[76] msInfo msLevel

MSmap

[79] mz normalize

notes

[82] pData pData<-

peaksCount

[85] phenoData phenoData<-

pickPeaks

[88] plot plot2d

plotDensity

[91] plotMzDelta polarity

precScanNum

[94] precursorCharge precursorIntensity

precursorMz

[97] processingData protocolData

pubMedIds

[100] pubMedIds<- quantify

removeMultipleAssignment

[103] removeNoId removePeaks

removeReporters

[106] rtime sampleNames

sampleNames<-

[109] scanIndex show

smooth

[112] smoothed smoothed<-

spectra

[115] spectrapply splitByFile

tic

[118] trimMz updateObject

varLabels

[121] varMetadata writeMgfData

writeMSData

see '?methods' for accessing help and source code

As you can see, the OnDiskMSnExp class has a rich set of
functions. In RStudio, you can use the Help feature to access
the manual page for all of these functions.

get the scan number from the first row of the table

created earlier

psm_scan_num <- all_top_psm$scan[1]

get the precursor scan number for the first MS2

spectrum

prec_scan <- precScanNum(spectra[psm_scan_num])

print(paste0("The precursor scan for ", psm_scan_num, "

is ", prec_scan))

[1] "The precursor scan for 25054 is 25053"

Reading each .mzML file can be slow, especially for high-
resolution instruments as were used in the example study.
One of the advantages of having data in a tidy format is the
ability to control sorting and iteration beyond what might be

available in application-specific packages. To create a column
of precursor scan numbers and add it to the all_matches
table, I can sort the table of peptide matches by
base_filename and then open the individual raw data files one
at a time, extracting all the data needed, and then move to
the next unique file in the table.

Since it is possible that a raw (.mzML) file could be

missing or be

corrupted in a way that makes the readMSData()

function fail.

Here, I define two functions for the tryCatch()

function used below.

The program will first try to perform the

normalRead() function

if it fails for some reason then it will run the

exceptionRead()

function. The point is that we want the program to

simply put a

missing value for the precursor scan if it's not

available and then

continue with the rest of the files rather than halt

normalRead <- function(full_path) {

 readMSData(full_path, mode = "onDisk", verbose =

FALSE)

}

get_precursor_scan <- function(psm_tbl) {

 # File read exception handler

 exceptionRead <- function(e) {

 print(paste0(curr_file," read error"))

 return(NULL)

 }

 psm_tbl <- arrange(psm_tbl, base_filename)

 curr_file <- ""

 precursor_scan_list <- tibble(

 base_filename = character(),

 scan = integer(),

 precursor_scan = integer()

)

 n_iterations <- length(psm_tbl$base_filename)

 pb <- progress_estimated(n_iterations)

 for(i in 1:n_iterations) {

 update_progress(pb)

 filename <- psm_tbl$base_filename[i]

 if(filename == curr_file) {

 if(is.null(sp)) {

 precursor_scan <- NaN

 } else {

 precursor_scan <-

precScanNum(sp[psm_tbl$scan[i]])

 }

 prec_scan <- tibble(

 base_filename =

psm_tbl$base_filename[i],

 scan = psm_tbl$scan[i],

 precursor_scan = precursor_scan

)

 precursor_scan_list <-

bind_rows(precursor_scan_list, prec_scan)

 next

 } else {

 rm(sp)

 gc()

 curr_file <- filename

 full_path <- file.path("large-data",

"MSV000086195","ccms_peak",

 paste0(curr_file,

".mzML"))

 id_scan <- psm_tbl$scan[i]

 # Here the program attempts to read the raw

data file

 # if there is an error, the sp variable

will get the value

 # returned by the function specified

 sp <- tryCatch(normalRead(full_path),

error=exceptionRead)

 # if the read failed, put a missing value

(NaN) in for the

 # precursor scan, otherwise, get the

precursor scan from the

 # raw data

 if(is.null(sp)) {

 precursor_scan <- NaN

 } else {

 precursor_scan <-

precScanNum(sp[id_scan])

 }

 precursor <- tibble(

 base_filename =

psm_tbl$base_filename[i],

 scan = id_scan,

 precursor_scan = precursor_scan

)

 precursor_scan_list <-

bind_rows(precursor_scan_list,

 precursor)

 }

 }

 precursor_scan_list

}

Now, I can build the final table using the functions defined so
far.

get all of the MS1 scans which are precursors to the

top MS2 scans

psm_precursors <- get_precursor_scan(all_top_psm)

join the precursor scan numbers to the peptide

matched scans

all_top_psm <- all_top_psm |>

 inner_join(psm_precursors,

by=join_by(base_filename, scan))

show the contents of the first row (as strings)

as_tibble(t(all_top_psm[1,]), .name_repair,

rownames="Variable") |>

 dplyr::rename(Value=V1)

Now, the all_top_psm table can be used to perform
exploratory data analysis. It’s often convenient to save tables
like this for later use by writing a .csv file to disk.

all_top_psm <- arrange(all_top_psm, seq, batch,

fraction, rt)

write_csv(all_top_psm, file.path("data",

"all_top_psm.csv"))

3.7 Summary

It is often the case that application-specific libraries and
packages generate data that, while consistent within the

application domain, carry too many assumptions about how
the data will be used. If these assumptions (or opinions)
match your needs, then all of your data analysis can occur
using only the data structures provided. However, it is often
the case in mass spectrometry that only a part of a useful
library applies to your situation. You can use the parts of a
package in Bioconductor, for example, and create tidy
versions of the data that have exactly what you need ready to
be used in your analysis.
In the next chapter, I’ll take the output of the example in
Section 3.5 and use it to demonstrate several ways to explore
mass spectrometry data of different types.

Chapter 4

Exploratory Data Analysis

4.1 Introduction

In this chapter, I will cover the critical step of exploring mass
spectrometry data. R is particularly well suited for
performing exploratory data analysis, including statistical
summarization and preliminary data visualization. Because
mass spectrometry data vary widely in type and content,
general characterization and statistical summary are
essential first steps. However, analysis cannot proceed
without understanding the data set contents, organization,
and available metadata. Performing exploratory data
visualization is usually an early step in analyzing spectra,
chronograms (magnitudes over time without a separation),
and chromatograms (magnitudes over time with a separation
stage).

4.2 Exploring Tabular Data

It is not surprising that tools like Excel find such wide use in
analyzing mass spectrometry data given the prevalence of
tabular data in all types of research. The wild success of
table-based databases could have only happened if most of
our data could be represented as tables and sets of related
tables. It is important to be able to reproducibly analyze data
in tabular form, which as described earlier in this book, is
quite difficult with ad hoc tools like spreadsheets. The power
of spreadsheets is that they start with a view that naturally
lends itself to exploring the data you have.

I would make the argument, however, that true exploratory
data analysis goes far beyond what can be done easily with
spreadsheets, and that in R, a much richer exploration can be
performed, leading to a more powerful analysis. During the
exploratory phase of an analysis project, the goal is to
understand aspects of your data which will lead to selecting
specific analysis approaches and the acceptance or rejection
of various statistical assumptions. For example, if parts of
your data do not follow a normal distribution, or they contain
outliers, many standard statistics (like mean and standard
deviation) can have no meaning. It will also affect the use of
various hypothesis test methods. Therefore, it is essential to
understand what’s going on for all the variables you might
want to use for various types of analysis.

4.2.1 Statistical Summarization

Let’s start by loading a file containing some drug screen
data. The file is called opioids_peaks.csv, and you can load it
as follows:

opioid_msdata <-

read_csv(file.path("data","opioid_peaks.csv")) |>

 mutate_if(is.character, as.factor)

opioid_msdata

A tibble: 555 x 9

injection compound sample_type quant_area qual_area

quant_rt qual_rt response

<dbl> <fct> <fct> <dbl> <dbl>

<dbl> <dbl> <dbl>

1 1 Codeine standard 6046. 4994.

1.29 1.29 1.45

2 1 Oxycodo~ standard 1736. 1026.

1.41 1.42 0.451

3 2 Codeine standard 12817. 10377.

1.28 1.28 2.93

4 2 Oxycodo~ standard 3738. 1792.

1.41 1.41 1.02

5 3 Codeine standard 58342. 47001.

1.28 1.28 14.3

6 3 Oxycodo~ standard 15805. 8793.

1.41 1.41 5.38

7 4 Codeine standard 152514. 116663.

1.29 1.29 44.0

8 4 Oxycodo~ standard 35823. 19784.

1.42 1.42 13.6

9 5 Codeine qc 128370. 105415.

1.28 1.28 27.8

10 5 Oxycodo~ qc 30576. 17761.

1.41 1.41 9.30

i 545 more rows

i 1 more variable: ion_ratio <dbl>

From this data, you can see that there are 555 rows with a
batch ID, batch name, injection number (position in the
batch), and the sample type. Also, the areas and retention
times of the quantifier chromatographic peaks and qualifier
peaks are given along with the names of the compounds. The
computed values instrument response (quantifier area
divided by the internal standard [IS] area) and the ratio of
the quantifier area divided by the qualifier area are also in
this table.
This data set contains liquid chromatography with tandem
mass spectrometry (LC-MS/MS) data from selected reaction
monitoring (SRM) measurements of human urine toxicology
samples in which precursor ions were selected and a
fragment ion was measured as a function of time, creating
chromatograms for each compound observed. In this
particular measurement, both the target compound and a
stable isotopically labeled (SIL) version of the target
compound were measured. As is typical for this type of
measurement, one precursor fragment is selected as the
Quantifier ion, and its area is divided by the SIL fragment ion
area to generate an instrument response. To confirm that this

response can reasonably be assigned to the target
compounds, a second fragment from the precursor ion is
selected as a Qualifier. Since the quantifier and qualifier
come from the same precursor, they should have a fixed area
ratio and nearly identical retention times. The approach of
using a SIL compound which is spiked into an unknown
sample to correct for variations in preanalytical and
analytical processes is very common. The use of a second
fragment ion to improve the confidence that the resulting
instrument response came from a specific compound is also
common in a wide range of mass spectrometry
measurements, especially when reporting concentrations of
critical compounds (e.g. toxic compounds, controlled
substances, or biomarkers of disease).
In this example, the codeine quantifier monitored a peak with
a precursor ion m/z of 300.5 and a product ion m/z of 152.0.
The qualifier has the same precursor (300.5) and a different
product: 165.1. For oxycodone, the precursor ion was m/z
316.5 and the product ion m/z 241.0 was used for the
quantifier and m/z 212.1 was used for the qualifier. Later, I
will show how to explore the spectra of these compounds and
related substances to determine the potential for
interference.
R provides an easy way to see what a data set contains using
the summary() function.

names(opioid_msdata)

[1] "injection" "compound" "sample_type"

"quant_area" "qual_area"

[6] "quant_rt" "qual_rt" "response"

"ion_ratio"

Based on the variables provided, there are two compounds,
which can be summarized individually:

opioid_msdata |>

 dplyr::select(-injection) |>

 dplyr::filter(compound=='Codeine') |>

 summary()

compound sample_type quant_area

qual_area

Codeine :224 qc : 40 Min. : 13.5

Min. : 16.1

Oxycodone: 0 standard: 80 1st Qu.: 1080.9 1st

Qu.: 935.3

unknown :104 Median : 12019.6

Median : 9869.5

Mean : 84898.8

Mean : 69947.4

3rd Qu.: 75175.7 3rd

Qu.: 66030.5

Max. :2392432.6

Max. :1902945.9

quant_rt qual_rt response

ion_ratio

Min. :1.267 Min. :1.264 Min. : 0.0018

Min. :0.3963

1st Qu.:1.289 1st Qu.:1.289 1st Qu.: 0.2509 1st

Qu.:1.0996

Median :1.298 Median :1.298 Median : 2.8711

Median :1.1593

Mean :1.299 Mean :1.299 Mean : 21.0970

Mean :1.1958

3rd Qu.:1.308 3rd Qu.:1.308 3rd Qu.: 17.5162 3rd

Qu.:1.2413

Max. :1.331 Max. :1.327 Max. :633.9002

Max. :3.0942

opioid_msdata |>

 dplyr::select(-injection) |>

 dplyr::filter(compound=='Oxycodone') |>

 summary()

compound sample_type quant_area

qual_area

Codeine : 0 qc : 40 Min. : 11 Min.

: 10

Oxycodone:331 standard: 80 1st Qu.: 883 1st

Qu.: 529

unknown :211 Median : 14076

Median : 8246

Mean : 209845 Mean

: 132538

3rd Qu.: 98514 3rd

Qu.: 56138

Max. :5450375 Max.

:4403262

quant_rt qual_rt response

ion_ratio

Min. :1.397 Min. :1.404 Min. : 0.0013

Min. :0.2837

1st Qu.:1.421 1st Qu.:1.421 1st Qu.: 0.2517

1st Qu.:1.6120

Median :1.431 Median :1.429 Median : 4.3614

Median :1.7116

Mean :1.432 Mean :1.431 Mean : 72.3826

Mean :1.6668

3rd Qu.:1.441 3rd Qu.:1.441 3rd Qu.: 24.5704

3rd Qu.:1.7945

Max. :1.479 Max. :1.479 Max. :2492.4049

Max. :4.2204

4.2.2 Exploring Tabular Data with Plots

From the summary, you can see that the data come from two
compounds, Codeine and oxycodone, and that both are
almost equally represented. These observations come from
human toxicology tests, and the two compounds are
consumed in a range of doses and metabolized at different
rates, so you would not expect the concentration (which is
proportional to response) to follow any particular distribution.
In other sample populations (e.g. controlled compound

stability tests), there might be an expected concentration
distribution, so plotting the distribution of a variable can help
understand the data. The facet_wrap() layer takes a one-
dimensional sequence of panels and wraps them into two
dimensions according to the variable specified using the
vars() function.

Draw histograms of the distribution of peakRTQuant

for the two different compounds, and overlay them

p_response <- ggplot(opioid_msdata, aes(x=response)) +

 facet_wrap(vars(compound), scales = 'free') +

 geom_histogram()

print(p_response)

As suggested in the summary() table, the mean and median of
response are quite far apart for both compounds, and from
Figure 4.1 it’s clear that most of the values are at or near the
noise limit (which appears to be close to zero).

Figure 4.1 Distribution of compound responses.

Unlike the instrument response, which is related to
compound concentration, the chromatographic retention
time is expected to follow a well-known distribution based on
the chemical separation process. In this example, a reversed-
phase chromatography column was used to separate
compounds from other compounds in the sample matrix.
Some fluctuation from the expected retention time
established during method development is expected. These
are due to random changes in solvent flow control, column
temperature control, solvent mixing, and even the presence
of other compounds in an individual sample. However, if the
process is under good control, a signal that deviates
significantly from the expected retention time is possibly an
entirely different compound.

Draw histograms of the distribution of peakRTQuant

for the two different compounds, and overlay them

p_quant_rt <- opioid_msdata |>

 ggplot(aes(x=quant_rt, fill=compound)) +

 geom_histogram(alpha=0.6, binwidth = 0.01,

position="identity")

print(p_quant_rt)

The plot in Figure 4.2 shows that the retention times for the
Codeine and oxycodone quantifiers are roughly normal
distributions which suggests that the mean value in the
summary table is approximately the same as the median.

Figure 4.2 Distribution of quantifier peak retention

times.

If the deviation from the expected retention time was due to
a lack of selectivity in the mass spectrometer, then it might
be reasonable to exclude the low retention time observations.
Since the qualifier ion is supposed to have come from the
same intact precursor molecule, if there is a significant
deviation between the quantifier retention time and the
qualifier retention time, then it is unlikely that the two
signals came from the same compound and they could be
outliers.
Plotting the two retention times against each other should
show a fixed relationship between the two retention times if
the fragments came from the same precursor ion. When

color is specified inside the aes() function of a layer, a
legend is automatically created based on the colors assigned
to the variables plotted.

p_qual_quant_rt <- opioid_msdata |>

 ggplot() +

 geom_point(aes(x=quant_rt, y=qual_rt,

color=compound))

print(p_qual_quant_rt)

Figure 4.3 shows no significant difference between the
retention times of the quantifier ion and the qualifier ion,
which indicates that they came from the same precursor
molecule. However, I have not ruled out the possibility of
multiple precursor ions. When a molecular ion is excited to a
particular energy, it undergoes a unimolecular dissociation
reaction, which creates reaction products, some neutral and
some ionized. The ionized reaction products are detected as
fragments, and if the energy of the reaction is fixed, then the
reaction rates are constant and the yield of the various
reaction products is fixed. The idea behind the qualifier ion is
that the ratio of the quantifier fragment and the qualifier
fragment should remain fixed for a given molecular ion
assuming the reaction energy is controlled.

Figure 4.3 Qualifier peak retention time versus

quantifier peak retention time.

Another visualization that could be helpful is to compute the
ion ratio and compare it to the retention times of the
quantifier and qualifier ions.

p_ratio_rt <- opioid_msdata |>

 ggplot() +

 geom_point(aes(y=quant_rt, x=ion_ratio,

color=compound))

print(p_ratio_rt)

The plot in Figure 4.4 suggests a way to analyze the data: use
the spread in the ion ratio values for the high-confidence data

near the expected retention time to test the hypothesis that
the lower retention time samples are likely to be drawn from
the same population as the expected retention times. If they
are, further investigation into the separation stability and
mass spectrometer selectivity might be needed. This plot also
shows why most assays of this type place limits on both the
retention time tolerance and the ion ratio tolerance to
prevent real retention time shifts from creating potential
interferences with other compounds that might elute at an
earlier time.

Figure 4.4 Comparison of retention times and ion

ratios.

p_ratio_response <- opioid_msdata |>

 ggplot() +

 facet_wrap(vars(compound), scales = 'free') +

 geom_point(aes(y=quant_area, x=ion_ratio)) +

 scale_y_continuous(trans='log10',labels =

scales::comma)

print(p_ratio_response)

An interesting observation from the data in Figure 4.5 is that
for both compounds, the ion ratio values are more dispersed
when the quantifier peak area is lower. This means there is
some lower limit of concentration below which the ion ratio

becomes less effective at identity confirmation. Performing
hypothesis testing on observations for exploratory analysis
could be the next step in the analysis of this type of data.
Statistical analysis of liquid chromatography–mass
spectrometry (LC-MS) and LC-MS/MS data (hybrid MS) will
be discussed in more detail in Chapter 6.

Figure 4.5 Comparison of quant peak area and ion

ratios.

To explore the Ubaida-Mohien 2022 study [88] I can use the
data collected in Section 3.6 to perform some summary
analysis of the tibble created, which connected the spectrum
matches to the original fractions and the MS level 1 spectra
in those fractions.

From this data, I can tell how similar the batches were in
terms of peptide-spectrum matches for the control peptides
by looking at how many peptide identifications were recorded
for each fraction in each batch.
Load the csv file:

all_top_psm <- read_csv(file.path("data",

"all_top_psm.csv"))

And plot the distribution of the PSMs:

p_top_psm <- all_top_psm |>

 ggplot() +

 ggtitle("Distributions of PSMs by Batch and

Fraction (MSV000086195)") +

 facet_wrap(vars(batch)) +

 geom_histogram(aes(x=fraction)) +

 theme(plot.title = element_text(hjust = 0.5))

print(p_top_psm)

From the histogram in Figure 4.6, it appears that fraction 5
contains multiple matches in all three batches. I’ll start with
this fraction to explore the raw MS data. This is typical of
exploratory data analysis: you create some specialized
summarizations which are first used for exploration, and then
used in specific analysis.

Figure 4.6 Counts of internal control PSM

identifications by batch and fraction.

To examine fraction 5, the tibble can be filtered to show what
was matched in batch 1.

psm_batch1_fraction5 <- all_top_psm |>

 dplyr::filter(batch == 1, fraction == 5) |>

 dplyr::select(-c(batch,fraction,base_filename))

head(psm_batch1_fraction5)

A tibble: 6 x 10

seq charge ex_mz calc_mz match_score

exp_score scan rt mods

<chr> <dbl> <dbl> <dbl> <dbl>

<dbl> <dbl> <dbl> <chr>

1 APLDNDIGVSEATR 2 844. 844. 54.5

1.80e-10 21516 4796. 229.~

2 DVSLLHKPTTQISDFH~ 3 909. 909. 44

7.6 e- 8 22774 4974. 229.~

3 DVSLLHKPTTQISDFH~ 3 909. 909. 49.4

1.10e- 9 22782 4975. 229.~

4 TADTLADAVLITTAHA~ 3 937. 936. 52

3.20e-10 48271 9220. 229.~

5 TADTLADAVLITTAHA~ 3 937. 937. 54.7

6.60e-11 48333 9230. 229.~

6 TMITDSLAVVLQR 3 565. 565. 43.3

4.80e- 8 41938 8142. 229.~

i 1 more variable: precursor_scan <dbl>

The first entry looks like a very good match so I can plot the
spectrum from the mzML file.

4.3 Exploring Raw Mass Spectrometry

Data

Similar to exploring tabular data, spectral data can be
explored using both summarization methods and plotting. In
addition to the MSnbase package, the Spectra package [16] is
another excellent tool for exploring and processing spectra.
For a quick look at an individual spectrum from the
repository, I’ll load the file using the Spectra() function and
plot the first precursor (MS level 1) spectrum from the tibble
above.

raw_file_name <- file.path("large-

data","MSV000086195","ccms_peak",

"ScltlMsclsMAvsCntr_Batch1_BRPhsFr5.mzML")

batch1_fraction05 <- Spectra(raw_file_name)

plotSpectra(batch1_fraction05[21515],

xlim=c(844.25,846.5), ylim=c(0,1.5e7))

Several pieces of information are clear from the plot in
Figure 4.7. The X! Tandem result summary tibble indicated
that the precursor peptide used for identification was
experimentally observed at 844.4393 Da and was doubly
charged. This plot shows the isotopic pattern with the
monoisotopic ion having the highest intensity for this
peptide, and the mass difference between the next two
significant peaks is approximately 0.5 Da, consistent with the
peptide being in charge state 2. Also, it is apparent from this
plot that the data in the repository has been centroided prior
to conversion to XML. This is usually done to save space, and
is an option in the MSConvert program called “peak picking.”
To determine if this is the case, I converted the vendor .raw
file to mzML without the “peak picking” turned on to create
another version of the .mzML file.

Figure 4.7 Mass spectrum of precursor for

APLDNDIGVSEATR in Batch 1, Fraction 5.

4.3.1 Profile Data

The data in the raw files provided by the MSV000086195
project, were collected in profile mode, meaning that each
peak is actually multiple data points and the final molecular
weight was computed from those peaks. Let’s take a look at
the primary peak that was selected for fragmentation in this
scan using a more customized plot. First, load the mz and
intensity data for both the profile and centroided spectra.

load the profile data from the profile raw data

profile_file_name <- file.path("large-data",

"ScltlMsclsMAvsCntr_Batch1_BRPhsFr5_prof.mzML")

batch1_fraction05_profile <- Spectra(profile_file_name)

Based on the summary table the peptide of interest is

at scan number 21515

prof_prec_scan <- batch1_fraction05_profile[21515]

prof_x <- mz(prof_prec_scan)[[1]]

prof_y <- intensity(prof_prec_scan)[[1]]

The centroided data from the vendor was loaded in the

previous example

cent_prec_scan <- batch1_fraction05[21515]

cent_x <- mz(cent_prec_scan)[[1]]

cent_y <- intensity(cent_prec_scan)[[1]]

And then make an overlay plot

p_overlay <- ggplot() +

 coord_cartesian(xlim=c(844.25,846.5),

ylim=c(0,1.5e7)) +

 scale_y_continuous(labels = inten_label) +

 geom_segment(aes(x=cent_x, y=cent_y,yend = 0, xend

= cent_x),

 linewidth = 0.5, color=pal$blue) +

 geom_line(aes(x=prof_x, y=prof_y)) +

 geom_point(aes(x=prof_x, y=prof_y), shape=1) +

 xlab("m/z") +

 ylab("Intensity") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "MSV000086195 Batch 1 Fraction 5

(Scan 21515)",

 subtitle = "MS1 APLDNDIGVSEATR 2+

(Deaminidated N, TMT10plex)")

print(p_overlay)

The plot in Figure 4.8 overlays the mzML spectrum from the
data deposited for MSV000086195 with the raw data without
any data reduction. It is clear that multiple data points are
collected for each molecular weight reported. Profile spectra
contain the continuous values produced by the detector. In
this particular case, the instrument is a Fourier Transform
(FT) MS-type instrument, which collects a time-domain ion
current representing ion frequencies in an electrostatic ion
trap. The time-domain data is then converted into frequency-
domain data in which each observed frequency can be
calibrated to a specific m/z value. In the case of FTMS data,
the conversion from the time-domain to the frequency
domain produces a peak with a width corresponding to the
length of time the time-domain image currents were
observed. This is how FTMS instruments achieve high
resolution by using the inverse relationship between

observation time and resolution in the corresponding
frequency spectrum.

Figure 4.8 Profile spectrum of precursor for

APLDNDIGVSEATR in Batch 1, Fraction 5.

For each mass analyzer type, the observed data is different.
In quadrupole mass spectrometers, the voltages on the
quadrupole rods relate to specific m/z values, and the raw
data is obtained by changing a voltage over time, producing
multiple intensity values along an x-axis which is voltage
converted to m/z. In time-of-flight (TOF) instruments, it is the
flight time from the source to the detector that is measured
and the x-axis is converted to m/z.

p_overlay_zoom <- p_overlay +

 coord_cartesian(xlim=c(844.4,844.55),

ylim=c(0,1.5e7)) +

 annotate("text", x = 844.46, y = 1.3e7,

color=pal$blue,

 label = "Instrument Centroid\n844.4393")

Coordinate system already present. Adding new

coordinate system, which will

replace the existing one.

print(p_overlay_zoom)

As you can see from Figure 4.9 the profile peak has some
width, unlike the centroid m/z peak which is normally shown
as a “stick.” The m/z peak width defines the resolution of the
mass analyzer. The width at 50% of its full height, sometimes
called full width at half maximum (FWHM) divided by the
m/z is the definition of resolution in mass spectrometry.

Figure 4.9 Details of m/z 844.43864 profile peak in

Batch 1, Fraction 5.

The stick-like peaks seen overlaying the raw data represent
an estimation of the m/z value based on computing either the
maximum intensity recorded for the signal or the intensity at
the “center of mass” of the profile peak– the so-called
centroid of the peak. In Figure 4.9 the centroid spectrum was
computed using the instrument vendor approach as reported
by msConvert. Depending on the size of the expected data file,
and the noise level, it may be useful to acquire data in either
centroid mode (in which only the centroid values are stored),
or in profile mode, when additional signal processing steps
can be taken to estimate m/z values and intensities. It’s
worth noting that despite being collected at resolution
setting of 120 000, this spectrum still has overlapping m/z

peaks. These overlaps can create problems in determining
both the m/z value and its intensity. Because of overlapping
peaks and noise in mass spectra, significant effort has been
put into peak processing to improve mass accuracy as much
as possible.

4.3.2 Centroiding and Profile Peak Processing

The Spectra package includes a function for picking peaks in
a mass spectrum called pickPeaks() which has two methods
for determining the centroid of a peak. For exploratory
purposes, it’s useful to know how close the data are to the
theoretical isotope m/z values which can be computed from
the chemical formula. The peptide in this example is the
deamidated peptide APLDNDIGVSEATR with the N-terminus
TMT-10plex adduct (229.162932) and two additional protons
to create the +2 charged ion. The final ion has the chemical
formula which has a theoretical
monoisotopic m/z of 844.43864. In Chapter 5, I will dig deeper
into computing molecular weights of various types of
molecules and describe their isotopic distributions. For now,
I will use the results of the calculation for this specific
formula to compare the centroided value to the theoretical
value.

there are many standalone, and on-line tools for

computing relative

abundances of the isotopes of specific structures.

theoretical_x <- c(844.43864, 844.94032, 845.44200,

845.94368)

theoretical_y <- c(1.0, 0.735, 0.266, 0.0063)

scaled_y <- theoretical_y *

 max(prof_y[which(prof_x > 844)[1]:which(prof_x >

844.55)[1]])

picked_peaks <-

Spectra::pickPeaks(filterMzRange(prof_prec_scan,

mz=c(844.4,844.55)))

picked_x <- mz(picked_peaks)[[1]]

picked_y <- intensity(picked_peaks)[[1]]

Plotting the theoretical and the picked values shows the
accuracy of the profile spectra peak picking (Figure 4.10):

p_picked_theory <- ggplot() +

 coord_cartesian(xlim=c(844.425,844.475),

ylim=c(0,1.5e7)) +

 geom_segment(aes(x=theoretical_x, y=scaled_y,

 yend = 0, xend = theoretical_x),

 linewidth = 0.5, color=pal$darkorange)

+

 annotate("text", x = 844.443, y = 2.5e6,

color=pal$darkorange,

 label = "Theoretical\n844.43864") +

 geom_segment(aes(x=picked_x, y=picked_y,

 yend = 0, xend = picked_x),

 linewidth = 0.5, color=pal$blue) +

 annotate("text", x = 844.434, y = 2.5e6,

color=pal$blue,

 label = "Picked\n844.43841") +

 geom_line(aes(x=prof_x, y=prof_y)) +

 geom_point(aes(x=prof_x, y=prof_y), shape=1) +

 xlab("m/z") +

 ylab("Intensity") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "MSV000086195 Batch 1 Fraction 5

(Scan 21515)",

 subtitle = "MS1 APLDNDIGVSEATR 2+

(Deaminidated N, TMT10plex)")

print(p_picked_theory)

Figure 4.10 Comparing picked m/z values with

theoretical monoistopic values.

4.3.3 Binning and Regularization Techniques

The plot shown in Figure 4.10 is for a single scan (21 515)
which according to the summary tibble psm_batch1_fraction5
has real values for both retention time and molecular
weights. Here I use the t() (transpose) function from the
Matrix package to turn a row into a column.

Matrix::t(psm_batch1_fraction5[1,])

[,1]

seq "APLDNDIGVSEATR"

charge "2"

ex_mz "844.4393"

calc_mz "844.4386"

match_score "54.5"

exp_score "1.8e-10"

scan "21516"

rt "4795.983"

mods "229.1629 (1), 0.984 (5)"

precursor_scan "21515"

The retention time of this scan is 4795.983 seconds and the
experimentally observed m/z value is 844.4393. While these
exact values are useful for calculations, it is often useful to
bin and regularize multidimensional data as part of
exploratory data analysis.
The EDA technique that I will use next is a type of heatmap.
For some data sets, a basic heatmap plot supplied by MSnbase
is sufficient. Like many of the plots shown so far, it is
sometimes necessary to do a little more work to get a better
view of the data.
I’ll start with the MSmap function from the MSnbase package
following the example from the package vignette [102] on
Bioconductor. The code below generates Figure 4.11.

Figure 4.11 Heatmap from MSmap using 1 Da

binning.

file_name <- file.path("large-

data","MSV000086195","ccms_peak",

"ScltlMsclsMAvsCntr_Batch1_BRPhsFr5.mzML")

read the mzML file and extract the header

ms <- openMSfile(file_name)

hd <- header(ms)

ms1 <- which(hd$msLevel == 1)

rtsel <- hd$retentionTime[ms1] > 0 &

 hd$retentionTime[ms1] < 14700

make a map from 330 to 1600 m/z using a 1 Da bin

size

M <- MSmap(ms, ms1[rtsel], 330, 1600, 1, hd, zeroIsNA =

TRUE)

plot(M, aspect = "fill", allTicks = FALSE)

This quick plot, while likely useful in some situations, suffers
from two problems. First, the intensities of peaks seem to
range from 0 to about 1010 which hides most of the details of
the run. Second, while some customization can be done to
this plot it uses the older R graphics system called lattice
[103], which has been largely replaced by ggplot2 and so I’m
not going to cover it in this book. Instead, I will show you
how to generate a heatmap that exactly meets your needs
and can be customized using the ggplot2 system.
Instead of using MSnbase directly, I will use the Spectra
package to load, filter, and bin the spectral data. I will then
use a custom function to bin the time axis to create a three-
dimensional data set where the value for each bin is the ion
intensity. Once I have a grid, I can use the ggplot2 geometry
layer geom_raster() to plot it. Binning can be thought of as
turning the continuous values of the time and m/z axis into
categorical variables. The axes can still be labeled with
continuous values, but in reality, these are simply ordinal,
rather than continuous values. The ion intensity is still
handled as a continuous variable. By using the scaling
functions of ggplot2 I can control the dynamic range of the
plot to give the best overview.
The following three issues will need to be decided for this
type of data visualization:

1. What is the desired bin width for m/z?
2. What is the bin width for retention time?
3. What dynamic range for the intensity gives the most

information about the data set?

The first step in this analysis will be to get the m/z and
retention time ranges.

ms1_spectra <- file.path("large-

data","MSV000086195","ccms_peak",

"ScltlMsclsMAvsCntr_Batch1_BRPhsFr5.mzML") |>

 Spectra() |>

 filterMsLevel(msLevel=1)

ms1_spectra_count <- length(ms1_spectra)

print(paste("File contains", ms1_spectra_count,

"spectra"))

[1] "File contains 19081 spectra"

There are 19 081 MS level 1 spectra in the batch 1, fraction 5
run, and they have been loaded from the mzML file filtered
into Spectra object. Now the start and end m/z for these
spectra can be found using the mz() accessor function for the
Spectra class. The mz() function returns a list of all the m/z
values for all of the spectra in a list of numeric arrays.
Calling min() on the result of mz() produces an array holding
the minimum value in each of the arrays in the original list.
To find the lowest m/z value in the entire run, min() is called
twice on is array. The same is done to find the single highest
value using two calls to max().

start_mz <- mz(ms1_spectra) |>

 min() |> # array of minimum m/z for each

spectrum

 min() # lowest m/z for all spectra

end_mz <- mz(ms1_spectra) |>

 max() |> # array of maximum m/z for each

spectrum

 max() # lowest m/z for all spectra

print(paste0("Start m/z: ", format(start_mz, digits=1,

nsmall=1),

 " End m/z: ", format(end_mz, digits=1,

nsmall=1)))

[1] "Start m/z: 330.0 End m/z: 1600.0"

The format() function cleans up the floating point values and
the m/z range is 330–1600 as indicated in the method section
of the manuscript. Next, I’ll get the retention time range in
the same way.

start_rt <- rtime(ms1_spectra) |>

 min() |> # array of minimum m/z for each

spectrum

 min() # lowest m/z for all spectra

end_rt <- rtime(ms1_spectra) |>

 max() |> # array of maximum m/z for each

spectrum

 max() # lowest m/z for all spectra

print(paste0("Start RT (s): ", format(start_rt,

digits=1, nsmall=1),

 " End RT (s): ", format(end_rt, digits=1,

nsmall=1)))

[1] "Start RT (s): 0.3 End RT (s): 14700.3"

The manuscript indicated that the gradient was run for 195
minutes (11 700 seconds), and a rough calculation of the
time for the sample to get to the instrument is approximately
50–60 minutes. Based on the longest acquisition time, it
appears that 50 minutes (3000 seconds) were added to the
run, which would mean that the acquisition was started as
soon as the sample was loaded and the first 3000 seconds
should not contain any of the internal control peptides. When
customizing the plot to look at different regions in more
detail, the mz_range and rt_range variables will be used to
zoom in on the desired ranges.

full ranges from examination of raw data

mz_range <- c(330,1600)

rt_range <- c(0,14700)

ms1_spectra_filtered <- ms1_spectra |>

 filterMzRange(mz_range) |>

 filterRt(rt_range)

The Spectra package has a bin() function that can be used to
bin the m/z spectra into equally spaced bins. I’ll use that
function to bin the mass spectra. Here is where you can
control the degree of binning. First, I’ll look at the entire run.
Binning the m/z values into 1 Da bins like in Figure 4.11 is
done by setting the binSize=1 argument to Spectra::bin().

start with a m/z bin width of 1 Da

mz_bin_size <- 1

Bin the mass spectra into mz_bin_size bin widths.

Keep the zero entries (zero.rm=FALSE)

The default function for the combination of spectra

is sum().

Other function could be used with the argument

FUN=max()

binned_intesities_list <-

Spectra::intensity(Spectra::bin(ms1_spectra_filtered,

binSize = mz_bin_size,

zero.rm=FALSE))

print(paste0("Minimum Intensity: ",

format(min(unlist(binned_intesities_list@listData)),

 scientific = TRUE)))

[1] "Minimum Intensity: 0e+00"

print(paste0("Maximum Intensity: ",

format(max(unlist(binned_intesities_list@listData)),

 scientific = TRUE)))

[1] "Maximum Intensity: 1.037875e+10"

This confirms the problem with the simple plot, 1010 is an
extremely wide range of intensity values to display on one
plot. Especially, given that the maximum intensity observed
in Figure 4.8 is below 1.5 × 107.
The next step is to convert the binned intensity lists into a
tibble that can be used by ggplot2. The easiest way to do this

is to create a named matrix, which is just a matrix that has
row and column names. In this case, the column names will
be the m/z values of the binned m/z axis, and the row names
will just be an index.

binned_spectra_matrix <-

matrix(unlist(binned_intesities_list),

 nrow = length(binned_intesities_list),

 byrow=TRUE)

column names will be character type

they will have to be converted to numeric for

plotting

colnames(binned_spectra_matrix) <-

 head(seq(mz_range[1],mz_range[2],mz_bin_size), -1)

rownames(binned_spectra_matrix) <-

 c(1:(length(binned_spectra_matrix[,1])))

To bin the retention times of the MS level 1 spectra, I have to
compare all of the binned m/z vectors (rows) in the retention
time window. This could be done with two for loops, one for
each time window, and another for each element in the
spectrum arrays. It is common for this kind of nested loop to
run quite slowly. However, before adding a parallel
processing tool, which will increase the difficulty in
understanding and debugging, it is worth it to do some
timing tests to see if the process you are guessing is actually
worth optimizing.

4.3.3.1 Binning Retention Time: Evaluating Algorithms

I’ll walk through the process of evaluating the speed and
resource consumption of algorithms–called code profiling–to
show the speed differences between parallel and single step
comparison.

spectra_tibble <- as_tibble(binned_spectra_matrix) |>

 mutate(rt=rtime(ms1_spectra_filtered),

.before=as.character(mz_range[1]))

One approach to binning the retention time axis is to first
assign all of the spectra in each time window a retention time
for that time bin.

rt_bin <- 10 # For this test use a rt bin of 10

seconds

current_rt <- spectra_tibble$rt[1]

next_bin <- current_rt + rt_bin # initialize

next_bin

for(i in 1:length(spectra_tibble$rt)) {

 if(spectra_tibble$rt[i] < next_bin) {

 spectra_tibble$rt[i] <- current_rt

 } else {

 current_rt <- next_bin

 next_bin <- current_rt + rt_bin

 spectra_tibble$rt[i] <- current_rt

 }

}

make a smaller tibble of just the first time window

spectra_tibble <- spectra_tibble[spectra_tibble$rt ==

spectra_tibble$rt[1],]

print(paste0("There are ",length(spectra_tibble$rt),

 " spectra in the first time bin."))

[1] "There are 25 spectra in the first time bin."

Next, I’ll use the Sys.time() function to get the time at the
start of the code I’m interested in timing. I’ll then get the
time at the end of the section and subtract it to get the run
time. That time will be the approximate time to bin the first-
time bin which has 25 spectra according to the analysis
above.

current_spectrum <- spectra_tibble[1,]

n_iterations <- length(spectra_tibble$rt)

start_time <- Sys.time()

for(i in 1:n_iterations) {

 for(j in 2:length(spectra_tibble)) {

 if(spectra_tibble[i,j] > current_spectrum[1,j])

{

 current_spectrum[1,j] <-

spectra_tibble[i,j]

 }

 }

}

end_time <- Sys.time()

print(end_time - start_time)

Time difference of 1.699873 secs

Instead of a second loop, I can use the pmax() function to
produce a single numeric vector containing the largest values
in each position of the vector. This cannot be directly
converted to a tibble without providing column names, so a
single row matrix is created, column names are added and
the named matrix is converted to a tibble.

current_spectrum <- spectra_tibble[1,]

n_iterations <- length(spectra_tibble$rt)

start_time <- Sys.time()

for(i in 1:n_iterations) {

 acquisition <- spectra_tibble[i,]

 highest_values <-

pmax(as.numeric(current_spectrum),

as.numeric(acquisition))

 matrix_row <- matrix(t(highest_values), nrow = 1)

 colnames(matrix_row)<-c('rt',

head(seq(mz_range[1],mz_range[2],mz_bin_size), -1))

 current_spectrum <- as_tibble(matrix_row)

}

end_time <- Sys.time()

print(end_time - start_time)

Time difference of 0.1073031 secs

This analysis confirms that the pmax() approach is about 10
times faster than the nested loop. An estimated run time for
the entire data set is at most 5 minutes, compared to
approximately 51 minutes.

4.3.3.2 Plotting a Heatmap with ggplot2 Using Binned

Data

Now, I will define a function bin_rt() which I’ll use to bin the
retention time axis in a pipeline. It will take a tibble with the
retention time in a column and the binned m/z values as each
of the other columns. The basic idea is to loop through the

tibble and gather a single spectrum for each time bin. That
spectrum will contain the largest intensity values for each
m/z value.

bin_rt <- function(unbinned_spectra, rt_binsize=1) {

 current_rt <- unbinned_spectra$rt[1]

 rt_bin <- rt_binsize # width of retention time bin

(s)

 next_bin <- current_rt + rt_bin # initialize

next_bin

 # bin the retention time first

 for(i in 1:length(unbinned_spectra$rt)) {

 if(unbinned_spectra$rt[i] < next_bin) {

 unbinned_spectra$rt[i] <- current_rt

 } else {

 current_rt <- next_bin

 next_bin <- current_rt + rt_bin

 unbinned_spectra$rt[i] <- current_rt

 }

 }

 # pick out the highest signal for each mass channel

for each retention time

 rt_binned_spectra <- unbinned_spectra[0,] # empty

accumulator

 current_spectrum <- unbinned_spectra[1,] # start

with the first row

 current_rt = unbinned_spectra$rt[1]

 # this could be a long running function - use a

progress bar (pb)

 n_iterations <- length(unbinned_spectra$rt)

 pb <- progress_estimated(n_iterations)

 for(i in 1:n_iterations) {

 update_progress(pb)

 acquisition <- unbinned_spectra[i,]

 rt <- acquisition$rt

 if(rt %==% current_rt) {

 highest_values <-

pmax(as.numeric(current_spectrum),

as.numeric(acquisition))

 # convert the numeric vector from pmax()

into a tibble

 # via a matrix with named columns

 matrix_row <- matrix(t(highest_values),

nrow = 1)

 colnames(matrix_row)<-c('rt',

head(seq(mz_range[1],mz_range[2],mz_bin_size), -1))

 current_spectrum <- as_tibble(matrix_row)

 } else {

 rt_binned_spectra <-

bind_rows(rt_binned_spectra, current_spectrum)

 current_spectrum <- unbinned_spectra[i,]

 current_rt <- unbinned_spectra$rt[i]

 }

 }

 rt_binned_spectra

}

Now the spectral table can be constructed.

rt_bin_size <- 10

spectra_table <- as_tibble(binned_spectra_matrix) |>

 mutate(rt=rtime(ms1_spectra_filtered),

 .before=as.character(mz_range[1])) |>

 bin_rt(rt_binsize = rt_bin_size) |>

 pivot_longer(cols=!"rt", names_to="mz",

values_to = "intensity") |>

 mutate(mz=as.numeric(mz))

With the spectra_table tibble constructed, I can use it to plot
a ggplot2 based heatmap. The geom_raster() layer expects
data to contain only the three variables to be plotted, so the
pivot_longer() function was used in the pipeline after
binning, to leave only rt, mz, and intensity. Since the mz
values are derived from the column names, they have to be
converted to numeric using the mutate() function.
Along with using the geom_raster() layer, I will customize the
plot further by choosing a vivid and accessible color scheme,
and limiting the intensity scale based on the range of the
data observed. Since a high-quality spectrum for a peptide
was observed just below 2 × 107, I’ll set that for the highest
intensity to be plotted. This will set any intensity above the
limit to NA. The scale_fill_viridis() layer uses the vivid
viridis color palette, which like the Okabe-Ito palette as
mentioned in Chapter 1, is a highly accessible color palette.
In the heatmap plot, I want any NA value to appear white.

p_heatmap <- spectra_table |>

 ggplot() +

 geom_raster(aes(x = rt, y = mz, fill = intensity))

+

 scale_fill_viridis_c(limits=c(0.0, 2e7), na.value =

"white",

 option = "plasma") +

 coord_cartesian(expand = FALSE) +

 scale_x_continuous(breaks = seq(0,14700,1000)) +

 scale_y_continuous(breaks = seq(300,1600,100)) +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "MSV000086195 Batch 1 Fraction 5",

 subtitle = "Binning: m/z=1 rt=10s")

print(p_heatmap)

Figure 4.12 gives a good overview of the data you are
working with in this project. It shows the roughly 50-minute

delay between the acquisition start and the end of the
gradient. It also shows that some compounds show up as long
streaks, meaning they are not real chromatographic signals,
but probably contaminates that bleed over a long period of
time.

Figure 4.12 Heatmap for Batch 1 Fraction 5.

To take a closer look at the region around the peptide from
Figure 4.8, I can zoom in on that region with smaller bins.
Before repeating the code for the heatmap, it’s worth pulling
a big, repeated chunk into a function. Since every different
zoom level will call the same code to get the spectra_table
tibble, I simply moved all this code into a function called
get_spectra_table(). This is called refactoring. As refactoring
goes, this is a pretty simple step. It could be improved by

providing reasonable defaults for ranges, and bin sizes, but
since those are critical, I would rather have the function fail
than do something odd.

get_spectra_table <- function(ms1_spectra, mz_range,

rt_range,

 mz_bin_size, rt_bin_size)

{

 ms1_spectra_filtered <- ms1_spectra |>

 filterMzRange(mz_range) |>

 filterRt(rt_range)

 binned_intesities_list <-

intensity(Spectra::bin(ms1_spectra_filtered,

binSize = mz_bin_size,

zero.rm = FALSE))

 binned_spectra_matrix <-

matrix(unlist(binned_intesities_list),

 nrow = length(binned_intesities_list),

 byrow=TRUE)

 colnames(binned_spectra_matrix) <-

 head(seq(mz_range[1],mz_range[2],mz_bin_size),

-1)

 rownames(binned_spectra_matrix) <-

 c(1:(length(binned_spectra_matrix[,1])))

 #return the spectra_table

 as_tibble(binned_spectra_matrix) |>

 mutate(rt=rtime(ms1_spectra_filtered),

 .before=as.character(mz_range[1])) |>

 bin_rt(rt_binsize = rt_bin_size) |>

 pivot_longer(cols=!"rt", names_to="mz",

values_to = "intensity") |>

 mutate(mz=as.numeric(mz))

}

Now, this “helper function” can be used at each different
zoom level such that only the ranges and the specifics of the

plot are changed from one region or zoom level to another.

mz_bin_size <- 0.1

rt_bin_size <- 2

mz_range <- c(840,850)

rt_range <- c(4700,4900)

p_map_zoom_1 <- get_spectra_table(ms1_spectra,

mz_range, rt_range,

 mz_bin_size,

rt_bin_size) |>

 ggplot() +

 geom_raster(aes(x = rt, y = mz, fill = intensity))

+

 scale_fill_viridis_c(limits=c(0.0, 1e7),

 na.value = "white", option =

"plasma") +

 coord_cartesian(ylim=c(840,850), expand = FALSE) +

 scale_x_continuous(breaks = seq(4700,4900,25)) +

 scale_y_continuous(breaks = seq(840,850,1)) +

 annotate("segment", x=4795.983, y=850, yend = 0,

xend = 4795.983,

 linewidth = 0.25, linetype="dotted",

color="white") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "MSV000086195 Batch 1 Fraction 5",

 subtitle = "Binning: m/z=0.1 rt=2s")

print(p_map_zoom_1)

From the zoomed-in view shown in Figure 4.13, it appears
that there is more going on around m/z 844 than just the
isotopes. There is a larger peak which appears to elute
slightly earlier with the same charge state but higher
intensity. Repeating the process for a tighter zoom requires

not just zooming in on the coordinates, but also changing the
binning resolution.

Figure 4.13 Zoomed in heatmap for the peptide at m/z

844.4 and retention time 4796 using m/z bin size of

0.1 and retention time bin of 2 seconds.

mz_bin_size <- 0.01

rt_bin_size <- 2

mz_range <- c(844,846)

rt_range <- c(4600,4900)

p_map_zoom_2 <- get_spectra_table(ms1_spectra,

mz_range, rt_range,

 mz_bin_size,

rt_bin_size) |>

 ggplot() +

 geom_raster(aes(x = rt, y = mz, fill = intensity))

+

 scale_fill_viridis_c(limits=c(0.0, 5e6), na.value =

"white",

 option = "plasma") +

 coord_cartesian(ylim=c(844,846), expand = FALSE) +

 scale_x_continuous(breaks = seq(4600,4900,25)) +

 scale_y_continuous(breaks = seq(844,846,0.25)) +

 annotate("segment", x=4795.983, y=846, yend = 0,

xend = 4795.983,

 linewidth = 0.25, linetype="dotted",

color="white") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "MSV000086195 Batch 1 Fraction 5",

 subtitle = "Binning: m/z=0.01 rt=2s")

print(p_map_zoom_2)

To see the effects of binning, Figure 4.14 zooms in closer on
the 844.4393 range. Here it becomes evident that the
monoisotopic mass is shifting between bins. Notice that all
four isotopes observed for this peptide have a more intense
peak earlier in the chromatogram. The signal is more intense
for all four isotopes at approximately 4740 seconds, however
since the acquisition method specified a dynamic exclusion
time of 70 seconds, it is possible that the peak was first
included for MS/MS some 70 seconds earlier (maybe around
4670). This will be more evident when you look at the
extracted ion chromatogram for this precursor ion.

Figure 4.14 Zoomed in heatmap for the peptide at m/z

844.4 and retention time 4796 using m/z bin size of

0.01 and retention time bin of 2 seconds.

Zooming in closer will help in deciding how to create an
extracted ion chromatogram from this data.

mz_bin_size <- 0.001

rt_bin_size <- 2

mz_range <- c(844,845)

rt_range <- c(4700,4825)

p_map_zoom_3 <- get_spectra_table(ms1_spectra,

mz_range, rt_range,

 mz_bin_size,

rt_bin_size) |>

 ggplot() +

 geom_raster(aes(x = rt, y = mz, fill =

intensity)) +

 scale_fill_viridis_c(limits=c(0.0, 5e6),

na.value = "white",

 option = "plasma") +

 coord_cartesian(ylim=c(844.4,844.5), expand =

FALSE) +

 scale_y_continuous(breaks =

seq(844.4,844.5,0.01)) +

 scale_x_continuous(breaks = seq(4700,4825,25))

+

 annotate("segment", x=4795.983, y=845, yend =

0, xend = 4795.983,

 linewidth = 0.25, linetype="dotted",

color="white") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 ggtitle(label = "MSV000086195 Batch 1 Fraction

5",

 subtitle = "Binning: m/z=0.001 rt=2s")

print(p_map_zoom_3)

In Figure 4.15, it’s clear that the exact mass value shifts
slightly across the peak and that the side peak seen in Figure
4.9 is some kind of contaminate that is spread across the

entire region of interest, as opposed to a compound related
to the internal control peptide, or an FTMS artifact.

Figure 4.15 Zoomed in heatmap for the peptide at m/z

844.439 and retention time 4796 using m/z bin size of

0.001 and retention time bin of 2 seconds.

Figure 4.15 also shows that when thinking about
constructing an extracted ion chromatogram, there is a mass
range between 844.43 and 844.45 that is likely to include the
intensity maximums of each scan for the profile spectrum
shown in Figure 4.10. Despite having high mass resolution
the small movements of the centroid mean that setting the
window for an XIC to tight could miss the ion signal which is
clearly part of the analyte. Setting the window to wide risks
adding contaminating current from another compound which

is only slightly different in m/z and present throughout the
retention time of the ion of interest.
This example shows the value of exploratory data analysis.
Before diving into hypothesis testing, you now know the
limits of what your data can deliver. In the Section 4.4, I will
show you how to look at data from a chromatographic point
of view, both when data is collected in full scan mode and
extracted ion chromatograms can be created, and selected
reaction monitoring, when the ion of interest has already
been chosen and all that is available in the chromatogram.

4.4 Chromatograms and Other

Chemical Separations

While mass spectrometers are selective detectors, there are
many different compounds that have the exact same chemical
formula and so will produce a signal at the exact same m/z
value regardless of the resolution of the instrument. Often
this isobaric interference can be dealt with using a second
stage of mass spectrometry as I showed in the example of
peptides which have both a precursor m/z and a post-
fragmentation product m/z. However, so-called tandem mass

spectrometers are much more complicated and usually more
expensive than single-stage instruments. Prior to the
commercialization of tandem mass spectrometers, isobaric
interferences had to be dealt with by using a chemical
separation. Early in the commercialization of mass
spectrometry chemical separations were performed using
gas chromatography (GC) which uses an oven to heat a
capillary which acts as a stationary phase, and a flowing gas
which acts as a mobile phase. Compounds with high volatility
tend to stay in the mobile phase longer, interacting with the
stationary phase less often, and so move through the
capillary faster than compounds with low volatility. The
difference in time spent in the mobile phase produces a

separation based on a different chemical property than
molecular weight and so adds to the selectivity of the mass
spectrometer. The first commercial chromatography coupled
mass spectrometry instruments (GC/MS) used this approach,
and are still in widespread use in many areas of chemical and
trace chemical analysis.
After the commercialization of atmospheric pressure
ionization (API) sources, liquid chromatography (LC)
became the main method of chemical separation coupled
with mass spectrometry. In LC, the mobile phase is a liquid
mixture and the stationary phase can be constructed using a
wide range of materials to take advantage of different
chemical properties of target molecules to obtain a
separation prior to mass spectrometry detection. Even with
the additional level of selectivity added by LC, many mass
spectrometry labs use a combination of LC and tandem mass
spectrometry (LC-MS/MS) to achieve both a very high level
of selectivity and to improve sensitivity. In this Section, I
show how to visualize two types of chromatograms. When
LC/MS or GC/MS is performed in such a way that the full MS
spectrum is collected, then using the m/z binning idea, an
extracted ion chromatogram (abbreviated either as EIC or
XIC) can be plotted by extracting a set of m/z values to plot
with intensity on the y-axis and retention time on the x-axis.
In LC-MS/MS, the mass spectrometer can be configured to
fix the precursor m/z and fix the product m/z so that a
specific ion reaction (precursor ion to product ion) can be
recorded, creating a SRM chromatogram.
First, continuing with the example from Section 4.3, I’ll show
how to extract the chromatogram for the ions shown in
Figure 4.14.

4.4.1 Extracted Ion Chromatograms

To produce extracted ion chromatograms, I’ll go back to the
MSnbase package rather than the Spectrum package. The
MSnbase package provides the chromatogram() function to filter
the MS level and m/z range.

read, filter and select the raw data to create an xic

using the maximum

m/z intensity in the mass range as the value of the

chromatogram intensity

file_name <- file.path("large-data",

"MSV000086195","ccms_peak",

"ScltlMsclsMAvsCntr_Batch1_BRPhsFr5.mzML")

ms_level_1 <- readMSData(file_name, mode = "onDisk") |>

 filterMsLevel(msLevel = 1)

mz_xic_peptide <- ms_level_1 |>

 chromatogram(mz = c(844.43, 844.45),

aggregationFun = "max")

the chromatogram() function returns a type that can

hold an array of

chromatograms, but only the first one is populated

mz_range <- mz(mz_xic_peptide[1])

tidy up the data for plotting

xic_chrom_peptide <- mz_xic_peptide[1] |>

 (function(x) {tibble(rtime(x),

replace_na(intensity(x),0))})() |>

 setNames(c('rt', 'inten'))

With the XIC computed, it can now be plotted:

p_xic <- xic_chrom_peptide |>

 ggplot() +

 geom_line(aes(x=rt, y=inten)) +

 scale_y_continuous(labels = inten_label) +

 scale_x_continuous(breaks = seq(0,14700,1000)) +

 geom_segment(aes(x=4795.983, y=max(inten),

 yend = 0, xend = 4795.983),

 linewidth = 0.25, linetype="longdash",

color=pal$darkorange) +

 xlab("Retention Time (s)") +

 ylab("Intensity (counts)") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "MSV000086195 Batch 1 Fraction 5",

 subtitle = paste0("MS Level 1: ",

 sprintf("%.2f - %.2f",

mz_range[1], mz_range[2])))

print(p_xic)

In Figure 4.16, the dashed line shows the retention time for
the spectrum shown in Figure 4.9. Obviously there are more
ions that show up in this mass range at different times,
especially the intense peaks around 10 000 seconds. I’d also
like to see if the small adjacent ion seen in Figure 4.9 is an
artifact of the peptide ion, or a chromatographically
unrelated ion. Plotting a different XIC will help evaluate the
overlapping m/z ion (Figure 4.16).

Figure 4.16 Extracted ion chromatogram for the ions

between 844.43 and 844.45.

read, filter and select the raw data to create an xic

using the maximum

m/z intensity in the mass range as the value of the

chromatogram intensity

mz_xic_interference <- ms_level_1 |>

 chromatogram(mz = c(844.45, 844.46),

aggregationFun = "max")

the chromatogram() function returns a type that can

hold an array of

chromatograms, but only the first one is populated

mz_range <- mz(mz_xic_interference[1])

tidy up the data for plotting

xic_chrom_interference <- mz_xic_interference[1] |>

 (function(x) {tibble(rtime(x),

replace_na(intensity(x),0))})() |>

 setNames(c('rt', 'inten'))

If the overlapping ion has the same chromatographic
properties, it will have the same shape as the target analyte:

p_interference <- xic_chrom_interference |>

 ggplot() +

 geom_line(aes(x=rt, y=inten)) +

 scale_y_continuous(labels = inten_label) +

 scale_x_continuous(breaks = seq(0,14700,1000))

+

 geom_segment(aes(x=4795.983, y=max(inten),

 yend = 0, xend = 4795.983),

 linewidth = 0.25,

linetype="longdash",

 color=pal$darkorange) +

 xlab("Retention Time (s)") +

 ylab("Intensity (counts)") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 ggtitle(label = "MSV000086195 Batch 1 Fraction

5",

 subtitle = paste0("MS Level 1: ",

 sprintf("%.2f - %.2f",

mz_range[1], mz_range[2])))

print(p_interference)

From Figure 4.17 it’s clear that overlapping ion is part of an
ill-defined chromatographic artifact very early in the
gradient. This region is sometimes called the crash peak

because these compounds come “crashing through the

column” without being retained. They appear as long streaks
in heatmaps and can complicate the analysis of mass spectra.

Figure 4.17 Extracted ion chromatogram for the ions

between 844.43 and 844.45. The retention time

window was narrowed to the region of interest.

I would like to look at this region in more detail and show
both plots together. I could plot two separate graphs, or I
could overlap the two line plots on a single graph, which will
give a sense of how to distinguish this type of contaminate
from the target peptide chromatogram.

p_two_xic <- ggplot() +

 coord_cartesian(xlim=c(4500,5050), ylim=c(0, 6e7))

+

 scale_y_continuous(labels = inten_label) +

 scale_x_continuous(breaks = seq(4500,5000,100)) +

 geom_segment(aes(x=4795.983,

y=max(xic_chrom_peptide$inten),

 yend = 0, xend = 4795.983),

 linewidth = .5,

linetype="longdash", color=pal$darkorange) +

 geom_line(data=xic_chrom_peptide,

 aes(x=rt, y=inten, color="844.43 -

844.45")) +

 geom_line(data=xic_chrom_interference,

 aes(x=rt, y=inten, color="844.45 -

844.46")) +

 scale_color_manual(name = " m/z range",

 values = c("844.43 - 844.45" =

pal$black,

 "844.45 - 844.46" =

pal$blue)) +

 xlab("Retention Time (s)") +

 ylab("Intensity (counts)") +

 ggtitle(label = "MSV000086195 Batch 1 Fraction 5")

+

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 theme(

 legend.position.inside = c(.9, .9),

 legend.justification = c("right", "top"),

 legend.box.just = "right",

 legend.margin = margin(4, 4, 4, 4)

)

print(p_two_xic)

Figure 4.18 uses several features of ggplot2 to show what’s
happening with these two ions. For this plot, I used two

different data sources, one for each chromatogram, and then
added the color specification to the scale_color_manual()
layer so that it would create a legend for the plot. This plot
shows several key things about the data set that I will
investigate more later. First, as suspected from the heatmap,
the small peak in the mass spectrum is actually an interfering
ion that is bleeding across the entire retention time. Second,
the selected scan to perform MS/MS (MS level 2) was at the
peak maximum of the second peak in this retention time
range. Finally, it may be that the peak that shows up earlier
in the XIC is the same peptide, but for some reason it was not
selected for MS/MS. It could also be that this ion was
selected but the MS/MS spectrum obtained was not matched
to the same peptide.

Figure 4.18 Extracted ion chromatograms overlayed

and shown for the retention time of interest.

The exploratory data analysis on this data set and specific
peptide mass spectra allows us to proceed with more detailed
analysis related to IS. That analysis will be outlined in more
detail in the next few chapters. Before moving on to data
analysis of mass spectra in Chapter 5, I will show how to
perform exploratory data analysis on mass spectral data that
was collected explicitly as targeted chromatograms rather
than extracting them from full scan data.

4.4.2 Reaction Monitoring

In Section 4.2, I explored tabular data from quantitative LC-
MS/MS measurements obtained from SRM. SRMs are
chromatograms in which a chromatographic signal is created
by fixing the precursor ion and the product ion. This means
there will only be an ion signal when a reaction occurs to
produce a specific product ion from a specific precursor ion.
Often, many more than one precursor-product pair are
monitored in the same chromatographic run, and in Section
4.2.1, I showed peak areas for Codeine which was computed
by monitoring the reaction of m/z 300.5 being converted into
m/z 152.0. Another reaction, 300.5 to 165.1 was also
monitored for codeine. I also showed two reactions for
oxycodone, m/z 316.5 to 241.0, and 316.5 to m/z 212.1. In
this section, I’ll show how to visualize the actual
chromatograms, which is extremely valuable when exploring
data from these type of lower-dimension measurements.
First, I’ll just take a look at what the raw files contain, and
get some summary information about each run in the batch.
I’ll start with the first calibrator for Codeine used in the
results summary example in Section 4.2.1.

file_name <- "srm_001.mzML"

srm_filename <- file.path("data", file_name)

srm <- readSRMData(srm_filename)

Get a data.frame from the Feature data using the

fData() accessor function

id_df <- fData(srm)

The row number of the data frame is the index into

the feature data (fData)

that allows specific scans to be extracted

id_df$srm_index <- row(id_df)[,1]

id_df[1,] |>

 pivot_longer(names_transform = as.character,

 values_transform = as.character,

 everything()) |>

 pandoc.table(split.cells=c(50,40), justify="left")

##

name value

------------------------------------- -----------------

chromatogramId SRM SIC Q1=136.1

Q3=119.1 sample=1

period=1

experiment=1 transition=10

start=0.79

end=1.59 ce=10

name=Amphetamine

1

##

chromatogramIndex 13

##

polarity 1

##

precursorIsolationWindowTargetMZ 136.1

##

precursorIsolationWindowLowerOffset NA

##

precursorIsolationWindowUpperOffset NA

##

precursorCollisionEnergy 10

##

productIsolationWindowTargetMZ 119.1

##

productIsolationWindowLowerOffset NA

##

productIsolationWindowUpperOffset NA

##

srm_index 1

From this look at the raw data, I can see that there is
information in the column chromatogramId that is not in the
rest of the table and that should be parsed and put in its own
column, and that some of it are redundant. There are also
columns that have NA values which only clutter the table so
they can be removed. I can also see that the
chromatogramIndex is different from the row number, which is
the index I have to use to access a specific SRM. Finally, I
can see that the compound name is available, and by looking
at other entries in the table, the naming convention for this
data adds a -Dn to the name (where n is the number of
deuterium atoms) to identify the IS. Based on this, I can
extract the names, and identify if the compound is an IS or
not. The next block of code extracts information from
chromatogramId and cleans up the table for use in plotting the
SRMs.

Get the compound names from the Id string

id_df$compound <- str_match(id_df$chromatogramId,

"name=(.+)")[,2]

Mark the IS compounds which are named with a -Dx

where x is the number of

2H atoms in the isotopically labeled IS

id_df$IS <- str_match(id_df$compound, "-D\d")[,1] |>

 (function(data) {replace(data, !is.na(data),

TRUE)})() |>

 (function(data) {replace(data, is.na(data),

FALSE)})()

Tidy up the table

id_df <- id_df |>

 dplyr::rename(all_of(c(Q1 =

"precursorIsolationWindowTargetMZ",

 Q3 = "productIsolationWindowTargetMZ")))

|>

 select(!c(precursorIsolationWindowLowerOffset,

 precursorIsolationWindowUpperOffset,

 productIsolationWindowLowerOffset,

 productIsolationWindowUpperOffset,

 chromatogramId)) |>

 relocate(c("srm_index", "compound", "IS"))

head(id_df)

srm_index compound IS chromatogramIndex

polarity Q1

1 1 Amphetamine 1 FALSE 13

1 136.1

2 2 Amphetamine 2 FALSE 14

1 136.1

3 3 Amphetamine-D11 TRUE 96

1 147.2

4 4 Phentermine 2 FALSE 148

1 150.0

5 5 Phentermine 1 FALSE 147

1 150.0

6 6 Methamphetamine 2 FALSE 54

1 150.1

precursorCollisionEnergy Q3

1 10 119.1

2 10 91.1

3 25 98.1

4 51 65.0

5 27 91.0

6 15 119.1

More can be learned from this table. The qualifier and the
quantifier might not always be in an expected order. The
quantifier is usually the more intense of the two product ions
monitored, and I will make the assumption that when there
are two compounds with a number in their name, the lower
number is the quantifier, and the higher is the qualifier. This
assumption needs to be checked: in the chromatogramIdex
column, the quantifier seems to be collected first, and the
qualifier collected second. It also looks like my guess at the
right str_detect() pattern for finding the IS will work for
more than -D9 compounds.

Select the compound to be plotted and get the

index(s)

analyte <- "Codeine"

selected_analyte <- dplyr::filter(id_df,

str_detect(compound, analyte))

sort out the order of the quant and qual SRM indexes

under the assumption

that the lower chromatogramIndex is the quantifier

if(selected_analyte$chromatogramIndex[1] <

 selected_analyte$chromatogramIndex[2]) {

 quant_idx <- selected_analyte$srm_index[1]

 qual_idx <- selected_analyte$srm_index[2]

} else {

 quant_idx <- selected_analyte$srm_index[2]

 qual_idx <- selected_analyte$srm_index[1]

}

Assume there is no matching IS for the analyte

analyte_has_IS <- FALSE

IS_idx <- NA

If there is a matching IS, then set the flag and get

the IS index

if(length(selected_analyte$srm_index) == 3){

 if(selected_analyte$IS[3] == TRUE) {

 analyte_has_IS <- TRUE

 IS_idx <- selected_analyte$srm_index[3]

 }

}

Extract all of the x and y pairs for retention time and
intensity for the quantifier and, if present, the matching IS
using the rtime() and intensity() functions:

rt_quant <- rtime(srm[quant_idx])

inten_quant <- intensity(srm[quant_idx])

rt_qual <- rtime(srm[qual_idx])

inten_qual <- intensity(srm[qual_idx])

if(analyte_has_IS){

 rt_IS <- rtime(srm[IS_idx])

 inten_IS <- intensity(srm[IS_idx])

} else {

 IS_rt <- 0

 rt_IS <- 0

 inten_IS <- 0

}

With all of the data prepared, I can now plot any analyte with
or without an exact IS as shown in Figure 4.19. This code is
an example of building plots with layers that are conditional
on the data being plotted. The approach is simple, assign the
output of the ggplot layers to a variable depending on what is
available to plot.

Figure 4.19 Plot of the three SRMs used for

quantifying and qualifying codeine.

build the basic part of the plot

p_selected_srm <- ggplot() +

 scale_y_continuous(labels = inten_label) +

 geom_line(aes(x=rt_quant, y=inten_quant,

color="Quant")) +

 geom_point(aes(x=rt_quant, y=inten_quant,

color="Quant"), shape=1) +

 geom_line(aes(x=rt_qual, y=inten_qual,

color="Qual")) +

 geom_point(aes(x=rt_qual, y=inten_qual,

color="Qual"), shape=1)

If there is an exact IS add the layers to the plot to

show it, otherwise

leave the IS off the plot and only plot the Quant and

Qual

if(analyte_has_IS){

 p_selected_srm <- p_selected_srm +

 geom_line(aes(x=rt_IS, y=inten_IS, color="IS"))

+

 geom_point(aes(x=rt_IS, y=inten_IS,

color="IS"), shape=1) +

 scale_color_manual(name='SRM Ions',

 breaks=c('Quant', 'Qual', 'IS'),

 values=c('Quant'=pal$green,

'Qual'=pal$darkorange, 'IS'=pal$blue))

} else {

 p_selected_srm <- p_selected_srm +

 scale_color_manual(name='SRM Ions',

 breaks=c('Quant', 'Qual'),

 values=c('Quant'=pal$green,

'Qual'=pal$darkorange))

}

Finish the plot and set the theme

p_selected_srm <- p_selected_srm +

 xlab("Retention Time (min)") +

 ylab("Intensity") +

 ggtitle(label = "Selected Reaction Monitoring of a

Target Compound",

 subtitle = analyte) +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 theme(

 legend.position.inside = c(.9, .9),

 legend.justification = c("right", "top"),

 legend.box.just = "right",

 legend.margin = margin(4, 4, 4, 4)

)

print(p_selected_srm)

Finally, the xcms package can be used to perform peak
picking and area determination to get areas and responses as

shown in Section 4.2.1. In Chapter 6, I use this to look at
important concepts like IS recovery and monitoring QC
results over time. For now, I show how to pick and integrate
the three codeine peaks and compute the instrument
response for quantitation and the ion ratio for qualification.

picked_quant = findChromPeaks(srm[quant_idx],

 param = CentWaveParam(peakwidth =

c(0.025,0.1), integrate = 2))

picked_qual = findChromPeaks(srm[qual_idx],

 param = CentWaveParam(peakwidth =

c(0.025,0.1), integrate = 2))

picked_IS = findChromPeaks(srm[IS_idx],

 param = CentWaveParam(peakwidth =

c(0.025,0.1), integrate = 2))

plot(picked_IS, main = "Peak Picking for Codeine

Internal Standard")

Figure 4.20 shows the peaks that xcms picked. The peak list
below shows several descriptors, including retention time
ranges, areas, and signal-to-noise ratio. This analysis used
the CentWave algorithm [104] for peak picking, noise and area
estimation, and baseline correction. In Chapter 6, I’ll go into
more detail about various algorithms for analyzing
chromatographic peaks generated from mass spectrometry.
For now, I will use xcms to explore the data without getting
too detailed about the specific results it generates.

Figure 4.20 Picked IS peak using xcms CentWave

algorithm.

picked_IS@chromPeaks

rt rtmin rtmax into intb

maxo sn

[1,] 1.263667 1.223183 1.337183 4496.756 4406.447

163819 192

[2,] 1.459933 1.420633 1.482450 1505.468 1351.182

50364 15

And now, calculate the response and ion ratio from the
picked peaks. The first peak listed is the analyte of interest,
and the value for peak area (computed from a zero baseline)
is given by the into variable.

quant_area <-

as.numeric(picked_quant@chromPeaks[1,"into"])

qual_area <-

as.numeric(picked_qual@chromPeaks[1,"into"])

IS_area <- as.numeric(picked_IS@chromPeaks[1,"into"])

instrument_response <- quant_area / IS_area

ion_ratio <- quant_area / qual_area

print(paste0("Quant Area: ", quant_area))

[1] "Quant Area: 6187.50768854166"

print(paste0("Qual Area : ", qual_area))

[1] "Qual Area : 5141.51382564102"

print(paste0("IS Area. : ", IS_area))

[1] "IS Area. : 4496.75630769231"

print(paste0("Inst Resp : ", instrument_response))

[1] "Inst Resp : 1.37599355294328"

print(paste0("Ion Ratio : ", ion_ratio))

[1] "Ion Ratio : 1.20344083442589"

These values turn out to be reasonably close to those using
vendor software:

t(opioid_msdata[1,])

[,1]

injection "1"

compound "Codeine"

sample_type "standard"

quant_area "6045.656"

qual_area "4994.051"

quant_rt "1.288583"

qual_rt "1.288583"

response "1.45256"

ion_ratio "1.210572"

This suggests that xcms could help perform various analyses
of the system performance. In Chapter 6, I will discuss the
wavelet analysis used by xcms in much more detail.

4.5 Summary

In this chapter, I have shown several ways to explore various
kinds of data in order to understand what deeper analysis the
data will support and what tools can be used. In the next two
chapters, I will dive deeper into the analysis of mass spectra
using the TMT example from Section 4.3 to analyze the
internal controls discussed in Chapter 3. In Chapter 6, I will
show how to perform more complex analysis on the quality
and meaning of chromatographic data, both from extracted
ion chromatograms and from SRM data.

Chapter 5

Data Analysis of Mass Spectra

5.1 Introduction

Each peak in a mass spectrum represents the mass-to-charge
ratio (m/z) of an ion or a collection of ions. Characterizing
individual peaks in a mass spectrum depends on the mass
range under consideration. For relatively low molecular
weight ions (fragments or otherwise), it is often desirable to
compute monoisotopic weights and the weights and
distributions of isotope peaks from the same ion structure.
Other practical molecular weight calculations include
calculating the weights of common adduct ions created in
various ionization methods.
Related to calculating monoisotopic mass is the inverse
calculation of possible chemical formulas from a given mass
value. This calculation appears straightforward; however,
many thousands of possible chemical formulas can match a
narrow mass range. The usual method for narrowing the list
of possible formulas is to place constraints on the number of
rings, double bonds, and atoms.
Additionally, all ions, especially ions generated from
atmospheric ionization methods, can have multiple charges
(z) on a single ion, changing their position in the m/z axis.
The number of charges can be considerable for relatively
high molecular weight ions. This effect can be so extreme
that the probability of observing the monoisotopic ion is
extremely low and, thus, not observable in the spectrum. In
these cases, an algorithm can characterize the distribution of
charge states and estimate the molecular weight.

When a mass analyzer separates ions by m/z, the signal
measured by the detector follows a characteristic shape with
properties that are beneficial to know when performing
further calculations. Characteristics such as resolution,
center-of-mass (centroid), signal-to-noise, and, in some cases,
peak shape. In this chapter, I will give examples of
computing the centroid from quadrupole mass analyzer
peaks and using models of time-of-flight peaks to improve
molecular weight estimates.
Improvements in instrument design have made high-
resolution mass spectrometry available beyond the
electric/magnetic sector and FT-ICR instruments. However,
analyzing very high-resolution spectra requires considering
additional factors. This chapter will also provide examples
and techniques for working with high-resolution data.
The chapter will conclude with an example of quantitative
mass spectrometry and show how to use statistical methods
on high-resolution mass spectra to determine the differences
between quantities of proteins and peptides in samples. In
this section, I will introduce the infer package from
tidymodels [105] and the resampling approach to hypothesis
testing. Statistical analysis will play an important role in the
remainder of the book.

5.2 Molecular Weight Calculations

The history of mass spectrometry is tightly coupled to the
discovery of atomic isotopes [106]. Since that time, one of
the primary components of the analysis of mass spectra has
been to understand the masses and charges of ions observed
in a spectrum. One of the first tasks in analyzing the
spectrum of a compound is to compute the expected mass-to-
charge (m/z) of expected ions. When the molecule is
relatively small, it is often the case that the monoisotopic ion
is the most abundant, and the higher mass isotopes have a

lower relative abundance. At higher molecular weights,
especially for intact proteins and other polymers, the
monoisotopic mass is not easily detectable, and other
methods are used to compute the molecular weight of the
compound. Another important aspect of m/z values observed
in mass spectra is the mass of the ionizing moiety. For
atmospheric pressure ionization (API) methods, the
molecular ion is created by the gain or loss of one or more
protons. The rest mass of a proton (1.007276470 Da) [107] is
important in computing the observed ions in a mass
spectrum, adding or subtracting from an observed weight
when working backward from a positive or negatively
charged ion’s m/z to a formula [108]. In addition, API can
also create molecular ions through the addition of NH4

+ and
Na+. Finally, there are many ionization methods used in mass
spectrometry besides API. Some of the more common
methods are electron impact ionization (EI) and chemical
ionization (CI), which create molecular ions by adding or
removing electrons to create odd electron molecules of either
positive or negative polarity. Also, inductively coupled
plasma/mass spectrometry (ICP/MS) appears in both
industrial and research applications, making exact molecular
weight and isotope distribution calculations very important in
mass spectrometry. It has been the International Union of
Pure and Applied Chemists (IUPAC) that has maintained and
updated both the molecular weights of atoms and their
isotopic distributions. Through a series of technical reports
published over the years [109–111], IUPAC provides the
definitive values for the terrestrial weights and isotope
distributions for all the known atoms. I’ll use both the
weights and the relative abundances to compute the mass
values and the expected intensities of ions observed in mass
spectra.
In the next section, I will go through examples of calculating
the monoisotopic mass (as shown in Figure 4.10 in Chapter

(5.1)

4) for various compounds. After that, I’ll explain how to
calculate masses for isotopes.

5.2.1 Monoisotopic Mass Calculations

Calculating monoisotopic mass values from a chemical
formula is a straightforward process of multiplying the
number of atoms by the molecular weight provided by IUPAC
and then adding the number of ionizing adducts. The basic
formula is:

where the observed m/z peak is the mass-to-charge ratio,
is the monoisotopic mass, and is the number of adducts
(protons or other ionizing moieties) divided by the number of
ionizing moieties. From the IUPAC technical reports cited
above, it is simple to compute the theoretical monoisotopic
weight for any chemical formula. For example, the mass-
tagged, deamidated control peptide APLDNDIGVSEATR in
Figure 4.10 has the chemical formula .
The calculation of the monoisotopic mass of this formula is
given in Table 5.1.

TABLE 5.1

Calculation of monoisotopic mass for

Atom Isotope Mass (Da) Count Total

C 12 12 68 816
C 13 13.0033548380 4 52.0134193520
H 1 1.0078250319 119 119.9311787961
O 16 15.9949146223 27 431.8626948021
N 14 14.0030740074 18 252.0553321332
N 15 15.000108973 1 15.0001089730
Total 1686.8627341

The monoisotopic mass for this formula is 1686.8627341 when
the limiting significant digits of the mass of H are taken into
account. To compute the m/z value of the ion observed in
Figure 4.10, I will use Eq. (5.1), where there are two protons
added, leading to a charge state z of 2.

Note that the masses used come from IUPAC and that these
only apply to samples of terrestrial origin. Further, they are
updated occasionally, so the IUPAC reports [109–111] and
any errata should be checked for updates. The primary
changes made by IUPAC are not in the monoisotopic masses,
which have remained quite stable, but rather in the
abundance of various isotopes. As a wider range of materials
are measured, more natural isotopic enrichment and

depletion are observed and reported by IUPAC. When
working with isotopes in mass spectrometry the isotopic
abundances should be checked against the latest IUPAC
values. In the labeled peptide described in Table 5.1, there
were two stable isotopes used in the TMT-10plex mass tag:

 and which contributed their exact isotopic mass to
the monoisotopic mass since they were added to the molecule
synthetically, not via natural processes. In the calculation
performed, I assumed that all four of the atoms were
100% pure . However, due to manufacturing impurities, it
is possible that some of the atoms were actually
[112]. The result is that there could be some low abundance
ions observed at a lower m/z value than the theoretical
isotopic mass. While the occurrence of these impurities is
generally ignored, it is worth using the exploratory
techniques described in Chapter 4 to determine if additional
steps should be taken to account for impurities in isotopically
labeled compounds.
While synthetic isotopic abundances might be negligible in a
particular mass spectrum, the naturally occurring isotopes
are not, and I’ll address that next.

5.2.2 Isotope Abundance Calculations

The discovery of isotopes, atoms with extra neutrons, using
mass spectrometry has a long and fascinating history [113].
Using what could be called the first mass spectrometer, J.J.
Thomson reported [114] that Neon was comprised of atoms
with two masses: 20 and 22. Building on this foundation, his
student F.W. Aston used improved designs of mass
spectrometers to discover [115] the presence of isotopes for
many atoms.
Since that time, better instrumentation and theories have
been developed that improve our understanding of both the
weights and relative abundances of atomic isotopes, turning

them into tools that are used in many ways in modern mass
spectrometry [112, 113].
In the previous section, I used the current values for the
isotopes and to compute the exact mass of
compounds measured in mass spectra. Now, I will show how
to use an R package to compute isotope distributions from
arbitrary chemical formulas. A detailed review of the various
isotope distribution calculation algorithms can be found in
Valkenborg et al. [116].
While there are several packages for computing isotope
distributions, I will focus the examples in this chapter on the
CRAN package IsoSpecR [117, 118]. IsoSpecR is written in
C++ and has both Python and R bindings. Using the C/C++
programming languages for computationally intensive
algorithms is common in R but can, on occasion, lead to
support issues. The Bioconductor package Rdisop [119–122]
is also an option, but at the time of writing, this package has
limited support and its maintainer suggests that it be
removed from the Bioconductor repository [123], which
means that bugs may or may not get any attention.
IsoSpecR is not part of Bioconductor, so it can be installed
like any other CRAN package. In addition to the functions
needed to compute isotopic distributions, it includes the
isotope distribution data, which can be loaded using the
data() function and then extended. The data are in data
frames that contain the name, exact mass, and isotopic
abundance for a large number of atoms.

library(IsoSpecR)

load the package data

data("isotopicData")

names(isotopicData)

[1] "enviPat" "enviPatShort" "IsoSpec"

"IsoSpecShort"

[5] "IsoSpecShortZero"

From this list, IsoSpec, IsoSpecShort, and IsoSpecShortZero
are data frames that contain the mass/abundance values and
the names of the atoms as used by the package. The
IsoSpecShort data frame has only those atoms typically found
in peptides, and IsoSpecShortZero includes the zero
abundance isotope . For calculations on most biological
molecules, the IsoSpecShort data frame will be sufficient and
faster than the full IsoSpec data frame.
In Section 4.2.1, codeine was described in a low-resolution
method as having a precursor ion at m/z 300.5. Codeine has
a chemical formula C18H21NO3. Using the method described
above, this gives an exact monoisotopic mass of 299.15214.
For the observed m/z value in the singly charged case, I have
to add the proton mass to get 300.15942, which matches the
information in the GNPS [93] for codeine (Spectrum ID
CCMSLIB00011429539) [124].

Use the short isotope table

isotope_table <- isotopicData$IsoSpecShort

Specify the chemical formula

molecule <- c(C=18, H=21, N=1, O=3)

calculate all isotopes above 1% of the total

probability

isotope_dist <- IsoSpecify(molecule=molecule,

 showCounts = TRUE,

 stopCondition = 0.999,

 isotopes=isotope_table)

isotope_dist <- as.data.frame(isotope_dist)

isotope_dist$mass <- format(isotope_dist$mass,

digits=10)

isotope_dist$prob<- format(isotope_dist$prob, digits=5)

print(arrange(isotope_dist, mass))

mass prob C12 C13 H1 H2 N14 N15 O16 O17

O18

1 299.1521435 0.81169971 18 0 21 0 1 0 3 0

0

2 300.1491784 0.00296700 18 0 21 0 0 1 3 0

0

3 300.1554984 0.15933890 17 1 21 0 1 0 3 0

0

4 300.1563607 0.00093003 18 0 21 0 1 0 2 1

0

5 300.1584203 0.00197258 18 0 20 1 1 0 3 0

0

6 301.1525333 0.00058243 17 1 21 0 0 1 3 0

0

7 301.1563885 0.00500752 18 0 21 0 1 0 2 0

1

8 301.1588532 0.01477048 16 2 21 0 1 0 3 0

0

9 302.1597434 0.00098299 17 1 21 0 1 0 2 0

1

10 302.1622080 0.00085911 15 3 21 0 1 0 3 0

0

From this output, you can tell that IsoSpecR computes the
isotopic fine structure, which would require a high-resolution
instrument to observe, and even the highest resolution
instruments might not be able to resolve to the level
computed here. The same calculation done above regarding
the m/z value of the protonated ions can be performed by
adding the mass of the proton to each value in the mass
column. The most abundant isotopes are those with 0, 1, and
2 atoms. The next most abundant isotope introduces one

 in place of a atom.
With fine structure algorithms, you can specify the
probability of the occurrence of an isotopologue you want to
be returned in the output. In the program above, the
stopping value was set so that 0.999% of the abundance was
accounted for. That means that depending on the resolution
of your instrument, it might be necessary to combine

probabilities into a single peak when the instrument would
be unable to distinguish between peaks and very close m/z
values. Setting the stopping value for the default algorithm to
0.99 would return all the isotopes with a joint probability of
99%.
The process is similar when calculating isotope distributions
for more complicated molecules such as the
APLDNDIGVSEATR control peptide shown in Section 5.2.1.
To perform a calculation similar to the example from Table
5.1, the IsoSpecR package will be extended to add the label
atoms from the TMT-10plex tag and the two protons that
created the multiply charged ion in the raw data. This is done
by extending the IsoSpecShortZero isotope data from the
IsoSpecR package. This approach can be used to add any
atoms or other moieties needed to calculate distributions.

data("isotopicData")

This short list includes only isotopes found in

peptides and includes

the zero abundance isotope for Sulfur at 35 Da

isotope_table <- isotopicData$IsoSpecShortZero

convention: Ch for 13C (C-Heavy) and Nh for 15N (N-

Heavy) Pr is a proton

labeled_atoms = data.frame(

 element = c('Ch', 'Nh', 'Pr'),

 isotope = c('Ch', 'Nh', 'Pr'),

 mass = c(isotope_table[isotope_table$isotope ==

'C13', 'mass'],

 isotope_table[isotope_table$isotope ==

'N15', 'mass'],

 1.007276466621),

 abundance = c(1, 1, 1),

 ratioC = c(NA, NA, NA)

)

Add the new isotopes to the list

isotope_table <- rbind(isotope_table, labeled_atoms)

this molecule has 4 C13 atoms, 1 N15 atom, and is in

charge state 2

so has 2 protons (Pr)

molecule <- c(C=68, Ch=4, H=119, Pr=2, N=18, Nh=1,

O=27)

charge_state <- 2

calculate all isotopes above 1% of the total

probability

isotope_dist <- IsoSpecify(molecule=molecule,

 stopCondition = 0.99,

 isotopes=isotope_table,

 algo=0)

tidy up the output of the calculation and correct for

charge state and

generate a relative intensity of the isotope

distribution

isotopes <- as_tibble(isotope_dist) |>

 dplyr::mutate(mass = mass/charge_state)

|>

 dplyr::mutate(mass=format(mass, digits

= 10),

 prob=format(prob, digits=5)) |>

 dplyr::arrange(mass)

print(n=length(isotopes$mass), isotopes)

A tibble: 21 x 2

mass prob

<chr> <chr>

1 844.4386434 0.4136340

2 844.9371609 0.0272152

3 844.9403208 0.3067461

4 844.9407520 0.0042654

5 844.9417818 0.0056962

6 845.4388383 0.0201825

7 845.4407659 0.0229660

8 845.4419983 0.1120670

9 845.4424294 0.0031632

10 845.4434592 0.0042242

11 845.9392834 0.0015111

12 845.9405157 0.0073735

13 845.9424433 0.0170313

14 845.9436757 0.0268877

15 845.9441068 0.0011556

16 845.9451366 0.0015433

17 846.4409608 0.0011206

18 846.4421931 0.0017691

19 846.4441207 0.0062223

20 846.4453531 0.0047650

21 846.9457982 0.0014929

There are many standalone and online tools for

computing relative

abundances of the isotopes of specific structures.

theoretical_x <- as.double(isotopes$mass)

theoretical_y <- as.double(isotopes$prob)

theoretical_y <- theoretical_y / theoretical_y[1]

load the profile data from the profile raw data

profile_file_name <- file.path("large-data",

"ScltlMsclsMAvsCntr_Batch1_BRPhsFr5_prof.mzML")

batch1_fraction05_profile <- Spectra(profile_file_name)

Based on the summary table, the peptide of interest

is at scan number 21515

prof_prec_scan <- batch1_fraction05_profile[21515]

prof_x <- mz(prof_prec_scan)[[1]]

prof_y <- intensity(prof_prec_scan)[[1]]

Use the which() function to find the maximum peak

height in the desired range

in order to scale the theoretical isotope intensities

to to experimental

data

scaled_y <- theoretical_y *

 max(prof_y[which(prof_x>844)

[1]:which(prof_x>844.55)[1]])

A simple overlay plot can be used to show the measured
isotopic peaks combined with their theoretical m/z and
intensity values. Often in data visualization, it is useful to
create a multipanel plot. The ggpubr package provides the
ggarrange() function, which combines multiple plot objects
generated from ggplot() into a single figure. When creating

multiple plots that plot in the exact same way, creating a
specialized plot function is easier to read and maintain than
replicating the plot code. Here I create such a plot function
called peak_plot(), which will make sure that each panel will
use the same code regardless of how many isotopes I choose
to plot:

peak_plot <- function(theoretical_x, scaled_y, prof_x,

prof_y,

 xrange, yrange, main_title) {

 ggplot() +

 coord_cartesian(xlim=xrange, ylim=yrange) +

 scale_y_continuous(labels = inten_label) +

 geom_segment(aes(x=theoretical_x, y=scaled_y,

 yend = 0, xend = theoretical_x),

 linewidth = 0.5, color=pal$darkorange)

+

 geom_line(aes(x=prof_x, y=prof_y)) +

 geom_point(aes(x=prof_x, y=prof_y), shape=1) +

 xlab("m/z") +

 ylab("Intensity") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 ggtitle(label = main_title)

}

Now I will call the peak_plot() function with the various
ranges to generate a ggplot plot object for each isotope:

create plots for the first four isotopes

mono <- peak_plot(theoretical_x, scaled_y,

 prof_x, prof_y,

 xrange = c(844.425,844.475),

 yrange = c(0,1.5e7),

 main_title = "Monoisotopic (M)

844.43864")

iso_1 <- peak_plot(theoretical_x, scaled_y,

 prof_x, prof_y,

 xrange = c(844.925,844.975),

 yrange = c(0,1.5e7),

 main_title = "M+1 Isotopes

844.94032")

iso_2 <- peak_plot(theoretical_x, scaled_y,

 prof_x, prof_y,

 xrange = c(845.425,845.475),

 yrange = c(0,5e6),

 main_title = "M+2 Isotopes

845.44200")

iso_3 <- peak_plot(theoretical_x, scaled_y,

 prof_x, prof_y,

 xrange = c(845.925,846.25),

 yrange = c(0,1e6),

 main_title = "M+3 Isotopes

845.94368")

Using ggarrange() ggplot2 plot objects can be combined into
a single diagram and labeled to make Figure 5.1.

Figure 5.1 Comparison of theoretical and observed

isotope m/z and intensities for MS1 spectrum of

APLDNDIGVSEATR 2+ (Deaminidated N, TMT10plex).

library(ggpubr)

p_isotopes <- ggarrange(mono, iso_1, iso_2, iso_3, ncol

= 2, nrow = 2,

 labels = c("A", "B", "C", "D"))

print(p_isotopes)

When the theoretical isotope abundances are scaled to the
observed monoisotopic peak (Figures 5.1a), there are
discrepancies between the observed isotope intensities and
the theoretical values (Figures 5.1b,c). Further, either there

is a mass shift in the fourth isotope, or it wasn’t observed at
all, and the experimental peak belongs to a different
compound (Figure 5.1d).

5.2.3 Adducts

So far, I’ve covered mostly positive ion mode API, which
usually produces protonated ions. As discussed, in the
positive ion mode, a molecule could have multiple protons
and, therefore, multiple charges. The same is true in the
negative ion mode. Deprotonation (single and multiple)
produces negative ions. In addition to protons, it is also
common to observe ions that are formed from other adducts.
The most common of these are Sodium (Na+), Ammonium (

), and Potassium (K+). In an often-cited paper by Huang
et al., 30 different positive ion adducts are given along with
14 different negative ion adducts [125]. Many more adducts
and adduct/neutral-loss combinations have been reported
using various spectral libraries [126]. To compute the m/z
value for an ion created by an adduct, the adduct mass is
simply added to the monoisotopic mass of the molecule and
then divided by the charge as discussed in Section 5.2.1.
Table 5.2 shows some of the most common positive ion
adducts with the observed change in molecular ion mass.

TABLE 5.2

Common positive ion adducts and their m/z values

Adduct Mass added to M Charge

H+ 1.0072765 +1
Na+ 22.989218 +1

18.033823 +1

K+ 38.963158 +1

In addition to the loss of a proton [M – H+]–, another common
negative ion adduct is Chlorine [M + Cl]– which increases the
observed mass by 34.969402. More negative ion adducts can
also be found in Huang et al. [125].
Using the example of the codeine molecule given above, from
earlier in this section, the formula C18H21NO3 has an exact
monoisotopic mass of 299.15214. The .mgf file format is one of
the raw spectrum file formats that can be read by the
Spectra() function, but it requires an additional backend
reader called MsBackendMgf(), which comes from the
MsBackendMgf Bioconductor package.

library(MsBackendMgf)

mgf_file_name <-

file.path("data","CCMSLIB00011429539.mgf")

spectrum <- Spectra(mgf_file_name, source =

MsBackendMgf())

mz_values <- mz(spectrum)[[1]]

inten_values <- intensity(spectrum)[[1]]

Once the data is loaded, it can be plotted to show how the
theory matches the observed values. The reference spectrum
of codeine CCMSLIB00011429539 [124] is shown in Figure
5.2.

p_codeine_spectrum <-

 ggplot() +

 coord_cartesian(xlim=c(295,345), ylim=c(0,1.5e5)) +

 scale_y_continuous(labels = inten_label) +

 geom_segment(aes(x=mz_values, y=inten_values, yend

= 0, xend = mz_values),

 linewidth = 0.5, color=pal$black) +

 annotate("text", x = 308, y = 1.3e5,

color=pal$blue,

 label = "Instrument Centroid\n300.1589") +

 xlab("m/z") +

 ylab("Intensity") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "Codeine ESI qTOF Spectrum",

 subtitle = "GNPS CCMSLIB00011429539")

print(p_codeine_spectrum)

Figure 5.2 ESI spectrum of codeine from Waters LC-

MS qToF.

The MGF or “Mascot generic file” is simply a text file
containing mass and intensity values and a few header
elements. It can be opened with any text editor, and
examining the masses near the monoisotopic mass of codeine
shows several of the expected adducts. The specific adducts
observed depend on the molecule, the matrix from which it
was introduced, and the specific ionization source and
settings.
For the most common adducts, the mass errors observed are
quite small and provide solid evidence of the codeine
molecular weight. Not all of the ions above the monoisotopic
mass of codeine seen in the spectrum match up with the

common adducts shown in Table 5.3. This is most likely
because the codeine structure has a complicated
fragmentation pathway, which normally starts from the loss
of a water molecule, as suggested by Zhang et al. [127]. Ions
gain internal energy during the ionization process and can
undergo rearrangement, which, when adduct ions are added,
lead to various masses higher than the monoisotopic weight
but don’t match up to simple ionization adduct masses.

TABLE 5.3

Calculation of adducts to codeine: C18H21NO3

Observed m/z Adduct Mass error

282.148285 M – H2O + H+ 0.0005750

300.158905 H+ 0.0.005150
322.140991 Na+ 0.0.009222
338.115112 K+ 0.0.001895

5.2.4 Computing Molecular Formulas from Mass

Using sufficiently high resolution and mass accuracy, it is
possible to calculate potential chemical formulas from
monoisotopic masses from spectra. The subject has a rich
history since early commercial mass spectrometers were
sector instruments with high resolution [128]. Magnetic
sector instruments were adopted early for oil, coal, gas, and
environmental analysis. Because of the analytes of interest to
these industries, many of the chemical formula calculations
were limited primarily to C, H, and O. Later, programs were
expanded to include other elements [108, 129–131],
including those of biological interest.

The package I will be using for these calculations is unusual
in that it is not available on either CRAN or Bioconductor but
is hosted on the source code repository system called GitHub.
R has a package called remotes, which can be installed from
CRAN using the install.packages("remotes") command. The
remotes package includes functions to install from many
repositories and source code locations. The package I will
use for formula calculation is called MassTools [132, 133],
located at mjhelf/MassTools on GitHub. To install it, use the
command: remotes::install_github('mjhelf/MassTools').
This package uses functions from the Rdisop package, which
is in Bioconductor, so it will also have to be installed. To see
that MassTools is installed, just load it like any other package
and check for errors.

library(MassTools)

The specific function in MassTools that will calculate
chemical formulas from molecular weights is called calcMF().
The help page for the function shows the many options
available, but I will just show how to use it to compute
possible formulas based on the theoretical and experimental
monoisotopic masses of codeine.
First, the calcMF() function needs a set of elements to choose
from when selecting candidate atoms to be included in the
formula. The default atom list is from
Rdisop::initializeCHNOPS(), which includes phosphorus and
sulfur, which are needed to characterize peptides.

calcMF(mz = 299.1521435, z=0, ppm=5) |>

 dplyr::select(c(mz, MF, RdisopScore, unsat, error,

ppm))

mz MF RdisopScore unsat

error ppm

1 299.1521 C18H21NO3 0.0837838732 9

0.000000127 0.000424533

3 299.1524 C11H29N3S3 0.0498169901 -1

0.000216621 0.724116490

7 299.1528 C10H27N3O3P2 0.0060411248 0

0.000622341 2.080349459

8 299.1515 C10H25N3O5S 0.0034178005 0

-0.000651769 -2.178720809

9 299.1528 C11H21N7OS 0.0038665037 5

0.000685579 2.291740223

12 299.1511 C12H22N5O2P 0.0001091148 5

-0.001031460 -3.447944541

The chemical formula for codeine is the top-scoring
candidate formula based on using the theoretical
monoisotopic peak and a maximum absolute error of 5 ppm.
The same calculation can be done for the experimental mass
shown in Table 5.3.

calcMF(mz = 300.158905, z=1, ppm=5) |>

 dplyr::select(c(mz, MF, charge, RdisopScore, unsat,

error, ppm))

mz MF charge RdisopScore unsat

error ppm

2 300.1588 C10H26N3O5S 1 5.510520e-02 -0.5

-0.0001368139 -0.4558049

5 300.1594 C18H22NO3 1 1.200553e-02 8.5

0.0005150821 1.7160313

6 300.1584 C12H23N5O2P 1 8.735649e-03 4.5

-0.0005165049 -1.7207716

8 300.1596 C11H30N3S3 1 2.773479e-03 -1.5

0.0007315761 2.4372960

9 300.1579 C12H31NOPS2 1 1.820447e-04 -1.5

-0.0009854629 -3.2831373

11 300.1600 C10H28N3O3P2 1 6.175889e-05 -0.5

0.0011372961 3.7889800

13 300.1601 C11H22N7OS 1 3.002394e-05 4.5

0.0012005341 3.9996617

In this example, the codeine formula was not the top choice
because of the inclusion of sulfur in the element list. When
working with specific classes of molecules, it can be helpful
to control the atom candidates, which can be done by
modifying the list generated by Rdisop::initializeCHNOPS().
The names of the atoms in the list can be printed using the
lapply() function and the [[operator.

atoms <- Rdisop::initializeCHNOPS()

unlist(lapply(atoms,'[[',1))

[1] "C" "H" "N" "O" "P" "S"

To limit the formula to only C, H, N, and O, I can just delete
the last two elements of the list, which removes the
information for P and S:

atoms <- atoms[1:4]

Now, I will repeat the formula calculation with the shortened
atom list:

calcMF(mz = 300.158905, elements=atoms, z=1, ppm=5) |>

 dplyr::select(c(mz, MF, charge, RdisopScore, unsat,

error, ppm))

mz MF charge RdisopScore unsat

error ppm

2 300.1594 C18H22NO3 1 0.1095096 8.5

0.0005150821 1.716031

Now, there is only a single formula within the 5 ppm error
window, and it exactly matches the formula for codeine.

5.3 Statistical Analysis of Spectra

In this section, I will go through a detailed example of the
statistical analysis of peaks in a mass spectrum. Recall from
Section 3.4.1 that the tandem mass tag TMT10plex [89] kit
was used to label digested peptides from human samples
spiked with a predigested protein, bacterial beta-galactase
[90], as an internal control. In Section 3.6, I extracted
selected information on all of the labeled peptides from the
internal control, organized them into a data frame, and saved
them to a file for later use.
In this experiment, there were 10 human samples combined
into a single solution after labeling. Since the mass of the
label added to a peptide is the same for each human sample,
it means that all 10 TMT10plex fragment ions should be
present for the internal controls.
To begin, I will load the data mentioned above and sort it by
batch, fraction, and scan. By now, it should be clear that
there are many formats to store intermediate data to be used
later. My personal practice is to use CSV files, but you may
choose another format, like the base R data serialization
format, or another. For me, it is not usually worth the effort
to create an XML format for intermediate results unless you
are sharing them with collaborators and want to protect
against file corruption while maintaining a clear text format.
CSV files are notoriously bad for sharing since, as described
earlier, loading them into a spreadsheet and editing them
there can create all kinds of avoidable problems. So, with
that warning firmly in mind, you’ll notice that I tend to store
intermediate results from potentially long-running loops or
analyses in CSV files, and there are times when I will look at
them in a text editor, but you have to be very careful with
this practice.

control_id <- read_csv(file.path("data",

"all_top_psm.csv")) |>

 arrange(batch, fraction, scan)

A quick visualization of the TMT fragment region can be
made to show variation in the intensity observed for each
TMT fragment for a given peptide.
As usual, I first transfer from Bioconductor data structures to
vectors or other classes that can be made tidy if needed:

Batch 1 Fraction 5, APLDNDIGVSEATR 2+ is index 9 in

the sorted table

control_index = 9

raw_file_name <- file.path("large-

data","MSV000086195","ccms_peak",

paste0(control_id$base_filename[control_index],

".mzML"))

selected_control <- Spectra(raw_file_name)

cent_prec_scan <-

selected_control[control_id$scan[control_index]]

cent_x <- mz(cent_prec_scan)[[1]]

cent_y <- intensity(cent_prec_scan)[[1]]

Now plot the TMT fragments to see if anything surprising
seems to be going on (Figure 5.3):

p_tmt_frag <-

 ggplot() +

 coord_cartesian(xlim=c(126.25,131.25),

ylim=c(0,1.5e5)) +

 scale_y_continuous(labels = inten_label) +

 geom_segment(aes(x=cent_x, y=cent_y, yend = 0, xend

= cent_x),

 linewidth = 0.5, color=pal$blue) +

 xlab("m/z") +

 ylab("Intensity") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "MSV000086195 Batch 1 Fraction 5

(Scan 21516)",

 subtitle = "MS2 APLDNDIGVSEATR 2+

(Deaminidated N, TMT10plex)")

print(p_tmt_frag)

Figure 5.3 TMT 10plex fragments from

MSV000086195 Batch 1, Fraction 5 (Scan 21516).

Remember that the precursor ion m/z was selected from an
MS spectrum, and that ion actually represented 10 different
molecules, one from each of the 10 pooled samples. Each
labeled peptide has exactly the same chemical formula and,
thus, the same monoisotopic mass. The idea behind TMT and
other isobaric labeling methods is that when the labeled ion
is fragmented, the tag fragments into different m/z values
based on the location of labeled atoms in the tag. The
spectrum in 5.3 is from a peptide spiked into each sample at
the same concentration. So, several things could be going on
in this spectrum. First, the actual amount of internal control
added to each sample could be different. That would show up
as different intensities of each peak. It could also be that the

labeling efficiency or the fragmentation efficiency could be
different for the 10 different tags. Regardless of the cause,
the variation seen in the internal control represents the
variance in the experimental process, not biological variation.
The variation of all the internal control signals can be
evaluated statistically using analysis of variation (ANOVA) to
determine if the internal control shows that the raw intensity
values of the human samples can be used to determine
differences in expression or if steps need to be taken to
remove the experimental variation through some
normalization technique before analyzing unknown samples.
Even though this is a proteomics study, the same approach
can be used for almost any other mass spectrometry
measurement. When quantification, either relative or
absolute, is needed, evaluating internal controls and dealing
with run-to-run variations in instrument performance is an
important consideration.

5.3.1 Evaluating the Internal Control Samples

To evaluate how well the experiment was controlled by
analysis of the internal controls, first I need to collect the
intensities of the TMT 10plex fragments. In this section, I will
show how to do this for the general case, and later I will
show how to use Bioconductor to get intensities for popular
labeling reagents like TMT.
The get_tmt_inten() function below extracts the label
intensity from a spectrum, where x is the m/z vector and y is
the intensity vector. Depending on the resolution of the
instrument and the stability of the mass calibration, I’ve used
min_x and min_y parameters to specify the window around
which to capture the maximum intensity peak.

This function gets the TMT fragment intensity from

the spectrum

Several things could occur:

- there could be more than one fragment in the mass

range: report the max

- there could be no fragment (length = 0): report 0

intensity

get_tmt_inten <- function(x, y, min_x, max_x) {

 tmt_inten <- y[between(x, min_x, max_x)]

 if(length(tmt_inten) > 0) {

 tmt_inten <- max(tmt_inten)

 } else {

 tmt_inten <- 0

 }

 tmt_inten

}

As with the accumulator used in Section 3.6, I’ll create an
empty tibble, defining the column names and types. When the
reporter intensities are found for a particular spectrum, they
will be added to this table.

Create an accumulator tibble

get_empty_tmt <- function() {

 tibble(

 sample_type = character(),

 data_type = character(),

 pep_seq = character(),

 batch = numeric(),

 fraction = numeric(),

 scan_num = numeric(),

 tmt_126 = numeric(),

 tmt_127N = numeric(),

 tmt_127C = numeric(),

 tmt_128N = numeric(),

 tmt_128C = numeric(),

 tmt_129N = numeric(),

 tmt_129C = numeric(),

 tmt_130N = numeric(),

 tmt_130C = numeric(),

 tmt_131 = numeric()

)

}

The accumulator defined above is meant for the TMT 10plex
label but could be used for any type of quantification where
selected m/z intensities represented quantity. It could also be
adapted to handle other experimental designs. For example,
if fractionation was not part of the design, there would be no
need to track that information, and that field could be left
out.
Next, the get_reporters() function collects the intensity
values for the specific label reporters. Note that this function
should match the structure of the accumulator tibble. It
doesn’t have to fill every field, but the collected intensities
should match.

get_reporters <- function(selected, id, index,

type_name) {

 cent_prec_scan <- mzR::peaks(selected,

id$scan[index])

 cent_x <- cent_prec_scan[,1]

 cent_y <- cent_prec_scan[,2]

 tmt_inten <- tibble(

 sample_type = type_name,

 data_type = "raw",

 pep_seq = id$seq[index],

 batch = id$batch[index],

 fraction = id$fraction[index],

 scan_num = id$scan[index],

 tmt_126 = get_tmt_inten(cent_x, cent_y,

126.127, 126.1295),

 tmt_127N = get_tmt_inten(cent_x, cent_y,

127.124, 127.126),

 tmt_127C = get_tmt_inten(cent_x, cent_y,

127.130, 127.1325),

 tmt_128N = get_tmt_inten(cent_x, cent_y,

128.127, 128.1295),

 tmt_128C = get_tmt_inten(cent_x, cent_y,

128.133, 128.1365),

 tmt_129N = get_tmt_inten(cent_x, cent_y,

129.130, 129.1325),

 tmt_129C = get_tmt_inten(cent_x, cent_y,

129.136, 129.139),

 tmt_130N = get_tmt_inten(cent_x, cent_y,

130.133, 130.1365),

 tmt_130C = get_tmt_inten(cent_x, cent_y,

130.140, 130.1425),

 tmt_131 = get_tmt_inten(cent_x, cent_y,

131.137, 131.1395)

)

 tmt_inten

}

The mass ranges passed into get_tmt_inten() are empirically
derived. Another approach, used in a later example, focuses

on the exact m/z value of the reporter and uses a window
width that represents the mass error of the instrument. Both
approaches work, but it is possible for one spectrum to have
a higher m/z error than expected, which would result in
missing a reporter intensity.
In the following code segment, each raw file in the
control_id table created earlier is loaded, and the reporter
intensities are extracted with the get_reporters() function.
Here, since I only need the m/z and intensity values and I’m
not interacting with any of the other Bioconductor packages,
I am using the low- level openMSfile() function from the mzR
package. In my experience, loading and accessing data from
very large XML files can create disk input/output problems
for some operating systems. Using the simplest function
available and promptly closing the file gives the most
stability and the fastest operation of several options
available.
The files from this study were deposited in the mzML format
and are very large. Because of the size of the files, I will put
the reading code in a separate function called mzML_read()
and use the retry() function from the retry package in the
main loop to instruct the program to attempt another read of
the file if an input/output error occurs.

mzML_read <- function(full_path) {

 mzML_file <- mzR::openMSfile(full_path, backend =

"pwiz")

 return(mzML_file)

}

And now the reading function is used to loop over all the raw
data files. To try and maximize the stability of reading so
many large mzML files, after each pass through the loop, I
close the open file, delete the variable holding the file
information, and explicitly call the garbage collector gc()
function. Deleting a variable does not free up memory until

the garbage collector is called. While this approach adds
extra time to the loop, it can prevent memory problems while
reading large files in a loop.

library(retry)

ic_tmt_inten <- get_empty_tmt()

n_iterations <- length(control_id$batch)

pb <-

knitrProgressBar::progress_estimated(n_iterations)

for(control_index in 1:length(control_id$batch)) {

 knitrProgressBar::update_progress(pb)

 raw_file_name <- file.path("large-

data","MSV000086195","ccms_peak",

paste0(control_id$base_filename[control_index],

 ".mzML"))

 selected_control <- NULL

 # If there is an error reading the mzML file, it's

probably an I/O timing

 # problem so just try again.

 selected_control <- retry(mzML_read(raw_file_name),

 until = ~ !is.null(.),

 interval = 10,

 max_tries = 3)

 tmt_inten <- get_reporters(selected_control,

 control_id,

 control_index,

 "control")

 ic_tmt_inten <- bind_rows(ic_tmt_inten, tmt_inten)

 mzR::close(selected_control)

 rm(selected_control)

 gc()

}

rm(tmt_inten)

The design of this particular experiment makes each batch
unique rather than being process or technical replicates.
That means the batches contain different individual samples
and cannot be evaluated statistically without knowing which
reporters go with which individuals in each batch. It is true,
however, that for any single batch, it is probable that there is
a mix of master athlete (MA) and nonathlete (NA) samples in
each batch. So, if the internal control can be shown to be
consistent between samples in a single batch, then variations
within that batch could be due to biological variation. This is
an important step. The degree to which the internal controls
are statistically consistent sets the bounds for any variation
between samples that can be attributed to biological causes –
rather than process or instrumental variability.
The next step in the analysis, therefore, is to get the
intensities for Batch 1 and drop the batch and peptide
sequence information since all the peptides I want to look at
are from a single control protein.

ic_tmt_inten <- dplyr::filter(ic_tmt_inten, batch==1)

|>

 dplyr::select(-c(batch, pep_seq))

Since the internal control was added to every sample, there
should be no peptides that are missing a reporter intensity. It
could be that the m/z value shifted or that the fragmentation
resulted in insufficient intensity to get a signal, but
regardless, since I want to perform a log base two
transformation, values of zero have to be eliminated.
In this code chunk, I use the apply() function to vectorize the
operation on columns 5–14 of the table, which hold the
intensity values.

row_sub <- apply(ic_tmt_inten[,5:14], 1, function(row)

all(row != 0))

ic_tmt_inten <- ic_tmt_inten[row_sub,]

Commonly, a log base two transformation is used when
intensity values have a very wide dynamic range. Performing
a log transformation is sometimes all the normalization
needed depending on the stability of the instrument. It also
helps when using statistical methods sensitive to big
differences in the scale between measurements. The log
transformation can use any base, like 10, or the natural log
(e); however, base 2 is commonly used in biological
measurements since a power of 2 represents a doubling, or
fold change in the intensity. Fold changes have become the
most common way of describing the differential expression of
biological molecules, but it is just a convention.
Mathematically, any log transformation would achieve the
goal of bringing all the values of a measurement into a
similar numeric range. The transformation is performed on
columns 5–14 because, in this table, they contain the raw
intensity values for the 10 reporter ions.

ic_tmt_log2 <- ic_tmt_inten |>

 dplyr::mutate(across(5:14, log2))

The shape of the ic_tmt_log2 table is wide with respect to the
reporters. In other words, each reporter is a column, and the
values in the column are the intensities of each observation.
To perform comparisons between reporters (samples), the
table has to be changed so that a new column holds the name
of the reporter and another holds the intensity. This means
changing the shape of the table from wide to long. The
tidyverse package tidyr has many functions for changing the
shape of a table. The function needed for this transformation
is the pivot_longer() function. The inverse function,
pivot_wider(), is used to go back to a wider table. Changing

the shape to a longer table means going from 58 rows and 14
columns to 580 rows and 6 columns. The !c(sample_type,...)
statement tells pivot_wider() to keep repeating those
variables. It then repeats each of the 10 reporter names into
reporter and puts the values into a column called intensity,
which creates the 58 × 10 length and collapses the 10
reporter columns into 2.

ic_tmt_table <- ic_tmt_log2 |>

 tidyr::pivot_longer(!c(sample_type,

data_type, fraction, scan_num),

 names_to = "reporter", values_to

= "intensity") |>

 dplyr::mutate(across(1:3, as_factor)) |>

 dplyr::mutate_at('reporter', as_factor)

Now the data are in a format that the geom_boxplot() layer
can create a boxplot showing the mean and quartile
information for each reporter using ggplot2.

p_boxplot_tmt <- ic_tmt_table |>

 ggplot() +

 geom_boxplot(aes(reporter, intensity)) +

 xlab("Reporter") +

 ylab("log2(intensity)") +

 theme_classic() +

 theme(axis.text.x = element_text(angle = 45, hjust

= 1)) +

 theme(plot.title = element_text(hjust = 0.5, vjust

= 2)) +

 ggtitle(label = "Raw Internal Control Intensity -

Batch 1")

print(p_boxplot_tmt)

Figure 5.4 shows that there is variation in the medians of the
reporters even after the log transformation. However, all of
the means seem to be within the first and third quartiles

(25th and 75th percentiles), but this does not say that they
were or were not drawn from the same population, which, in
this experiment, they are supposed to. So, the next step is to
perform a hypothesis test to see if the variation between the
internal control samples could have occurred just by chance,
especially since there are only 58 observations for each
reporter.

Figure 5.4 Raw intensity for all reporters of the

internal control peptides for Batch 1.

There are base R functions for performing hypothesis testing,
but in the following section I will use a resampling approach
using the tidymodels [134] infer package to perform an
ANOVA test [135], which is described in both the package

(5.2)

documentation and the book Statistical Inference via Data

Science: A ModernDive into R and the Tidyverse [136].

5.3.2 Hypothesis Testing Using Resampling

ANOVA

The approach to hypothesis testing that I will use is based on
resampling and implemented via the infer package. For all
hypothesis testing, regardless of the method used, the steps
are the same [137, 138]. First, you pick a test statistic that is
computed from the observed data, and then you compare
that statistic to the range of values that could be generated
by the null hypothesis. Finally, you compute the probability of
obtaining the test statistic from the observed data by chance
by comparing it to the null hypothesis distribution.
Hypothesis testing can be confusing when using the classical
statistical approach and nomenclature. Thankfully, in the age
of cheap computing, the process can be simplified. First, you
have to carefully choose what test statistic is appropriate for
the question you are asking. Luckily, in this example, the test
statistic and null hypothesis are straightforward. I want to
know if the mean values of the intensities of the 10 internal
control observations differ from each other. The test statistic
for this question is the -score:

I can compute the -score for the reporters, and then
compare it to the -score I get when I randomly assign the
observed intensities to a label. Randomly assigning
intensities to reporters is a way of stating the null hypothesis:
there is no relationship between the reporter and the
intensities observed for that reporter.

In the infer package, this is done by chaining a set of steps.
First, specify the relationship being tested. This is passed to
specify() using the traditional syntax for formula definition
in R. Second, set the hypothesis, in this case, that the null
hypothesis is that intensity is independent of reporter, and
then state what test statistic to compute. In this case, the
value defined in Eq. (5.2) is the right test statistic.

raw_observed_f_statistic <- ic_tmt_table |>

 specify(intensity ~ reporter) |>

 hypothesize(null = "independence") |>

 calculate(stat = "F")

Now, I have the -score from the observed data. Next,
compute the -score from 5000 repetitions of randomizing
the intensities among the reporters.

raw_null_dist <- ic_tmt_table |>

 specify(intensity ~ reporter) |>

 hypothesize(null = "independence") |>

 generate(reps = 5000, type = "permute") |>

 calculate(stat = "F")

The infer package has a simple visualization that overlays
the observed -score from the distribution of possible -
scores that could be generated if the intensity and reporter
were independent.

p_raw_null_dist <- raw_null_dist |>

 visualize() +

 shade_p_value(raw_observed_f_statistic, direction =

"greater") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 xlab("F-Statistic") +

 ylab("Count") +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "Sampling-Based Null Distribution

(n=5000)",

 subtitle =

 paste0("Raw Internal Control Intensities: F

= ",

 round(raw_observed_f_statistic,

digits=4))

)

print(p_raw_null_dist)

The observed -score seen in Figure 5.5 seems large
compared to the distribution of -scores created by random,
but to get the probability of a score that large being observed
by random, I need to calculate the -value. The get_p_value()
function performs this calculation and takes an argument to
determine what is being calculated – in this case, the
probability of getting a value “greater,” which is assigned to
the direction parameter.

Figure 5.5 Overlay of the observed -score with the

distribution of -scores for the null hypothesis that

the intensity and reporter are independent.

Tidymodels method for computing the p-value for the

observed f-statistic

raw_p_value <- raw_null_dist |>

 get_p_value(obs_stat = raw_observed_f_statistic,

direction = "greater")

raw_p_value

A tibble: 1 x 1

p_value

<dbl>

1 0.0022

Historically, when the probability of getting the observed -
score is below 0.05, it is taken to mean that it is very unlikely
that the observed data occurred by random chance. Since the

-value for getting the -score I saw is much less than 0.05, I
can reject the null hypothesis as the explanation of the
differences in the means and state that I am more than 95%
confident that there is a relationship between the reporter
intensity mean and the reporter. Since the reporters I am
analyzing are all internal controls, there is no biological
reason for any of the means to be different, which suggests
that the variation is coming from the experimental process.
There are many ways to attempt to remove the nonbiological
variation from experimental measurements to give a more
accurate value for signals that may be different for biological
reasons. The process is called normalization and is almost
always required when using mass spectrometry for
quantitative or relative quantity measurements. In the next
section, I will show one way of performing intensity
normalization and then use the resampling ANOVA approach
to evaluate the normalized data.

5.3.3 Normalizing Intensity Data

One of the more powerful normalization methods is called
quantile normalization, originally described by Bolstad et al.
[139]. The basic idea is to adjust the intensity values of each
sample to create a single averaged distribution of intensities
from which each peak intensity is drawn. In this experiment,
each fraction 1–33 was a separate injection and prepared
separately, so differences between the distribution of
intensities of each injection can reasonably be assumed to be
systematic variation, not biological. This assumption seems to
hold for proteomics and other measurements where the

majority of compounds do not vary in concentration between
individuals. This normalization technique also requires a
large number of measurements to give effective results. In
Chapter 6, I will show an alternative normalization technique
that uses internal controls to correct individual
measurements in chromatography experiments using stable-
label isotope internal standards.
In indirect normalization, the expectation is that post-
normalization, the internal controls will show no significant
relationship between the mean intensity and the reporter.
Once experimental variation has been removed, compounds
can be tested for biological variation between individuals.
In Section 5.3.1, I showed a general method for obtaining
selected values for peaks of interest (reporter fragments in
this case) directly from spectra without using external
libraries. To perform this type of operation on an entire batch
is more efficient using the Bioconductor function quantify()
loaded by the MSnbase package. Conveniently, MSnbase also
includes the required reporter information for the
experiment I am examining, which will be used as an
argument to quantify(). In this case, the TMT10HCD set
matches what was given in the Ubaida-Mohien et al. paper.
Further, the MSnbase package also includes the normalise()
function from Bolstad’s preprocessCore package [140], which
includes several normalization techniques besides the
quantile method. Depending on your experimental design,
other methods may give better results. For this example, I’ll
stick to the quantile method.
First, I’ll create a slightly different structure to hold the TMT
information. This structure includes the precursor ion
intensity, which can also be used to normalize MS level 2
data in some cases.

get_empty_tmt_norm <- function() {

 tibble(

 sample_type = character(),

 data_type = character(),

 fraction = numeric(),

 scan_num = numeric(),

 precursorInten = numeric(),

 tmt_126 = numeric(),

 tmt_127N = numeric(),

 tmt_127C = numeric(),

 tmt_128N = numeric(),

 tmt_128C = numeric(),

 tmt_129N = numeric(),

 tmt_129C = numeric(),

 tmt_130N = numeric(),

 tmt_130C = numeric(),

 tmt_131 = numeric()

)

}

For this normalization example, I will only look at Batch 1.
This is because in their manuscript, Ubaida-Mohien et al.
state that there were 24 individuals tested by liquid
chromatography with tandem mass spectrometry (LC-
MS/MS). With three batches, there are 30 potential slots, so
24 individuals were randomly divided between the batches,
and the remaining six samples were randomly chosen as
technical replicates. That means that each batch contains
different individuals, and the batches cannot be combined to
test the significance of any particular reporter intensity
except for the internal control. Even though the exact
experimental design was not given in the paper or placed in
the MassIVE repository, I am limiting the analysis to the first
batch. It is unlikely that a single batch contains individuals of
one group by random. In this study, there were two groups:
MA and NA. It is also unlikely that a single batch contains all
the technical replicates, although both are theoretically
possible.

result_files <- list.files(

 file.path("large-data",

"MSV000086195","ccms_peak"),

 pattern = "_Batch1_")

To perform intensity normalization, I will use the normalise()
function, and instead of manually finding the reporter
intensities, I will use the quantify() method, which has a
built-in list of m/z values for the TMT10plex reporters. The
method used above will work for any reporter m/z values (or
any specific m/z values besides labeled reporters). Be sure to
check the help page for quantify() for a list of the mass tags
supported.
Since the quantify() method is only looking at the m/z region
of the named mass tag, I decided to shorten the spectra to
only the reporter m/z range using filterMz(). This is not
strictly necessary, but passing the smallest amount of data
needed into a function is a habit I tend to follow.
The function quantify() returns an MSnSet object, which is
passed to exprs() that extracts the intensity values. The
exprs() function is from the Biobase package and is an
example of how the mass spectrometry packages in
Bioconductor are built on packages from other high-
throughput expression packages. The MSnSet object directly
extends the class eSet (expression set), which stores data in
S4 slots meant to be extracted by accessor functions.

getClassDef("MSnSet")

Class "MSnSet" [package "MSnbase"]

##

Slots:

##

Name: experimentData processingData

qual

Class: MIAPE MSnProcess

data.frame

##

Name: assayData phenoData

featureData

Class: AssayData AnnotatedDataFrame

AnnotatedDataFrame

##

Name: annotation protocolData

.__classVersion__

Class: character AnnotatedDataFrame

Versions

##

Extends:

Class "eSet", directly

Class "VersionedBiobase", by class "eSet", distance 2

Class "Versioned", by class "eSet", distance 3

Many different measurement types are stored in a class
derived from eSet, and exprs() doesn’t care which type of
eSet you pass it. When passed the output of quantify(), the
exprs() function returns a matrix with rows representing
scans (features in the Bioconductor nomenclature) from the
raw data file and columns representing the 10 reporters
(called samples by Bioconductor). The matrix created by
exprs() needs to be named, so I added the reporter names as
syntactically correct strings for use with tidyverse and
tidymodels packages. In the same loop, I also perform the
step of calling normalise() in order to get the normalized
intensity values. Here, staying in the Bioconductor domain
longer than I have in previous examples helps since
quantify(), normalise(), and exprs() were all designed to
work together. Only after I have the results I want from these
functions will I move back over to the tidyverse approach.
First, create a vector to hold the reporter names. I’ll use this
when creating a tidy version of the matrix generated by
exprs().

reporters <- c("tmt_126", "tmt_127N", "tmt_127C",

"tmt_128N", "tmt_128C",

 "tmt_129N","tmt_129C", "tmt_130N",

"tmt_130C", "tmt_131")

The following is a big chunk of code. It could be made to
appear shorter by breaking some parts into separate
functions, but I’ve kept everything in line to reduce
redundant steps that take a long time when files are big. It’s
important to know when to break things up and when to keep
them together, and it’s more art than science. Generally, you
should follow the DRY principle (“don’t repeat yourself”)
[141] and minimize code duplication. However, Donald Knuth
popularized another important principle in programming:
“Premature optimization is the root of all evil” [142] and
premature abstraction should also be avoided [143].

This could be a long-running process to read and

quantify all of the data

from the 33 files in a single batch - so use a

progress bar

n_iterations <- length(result_files)

pb <-

knitrProgressBar::progress_estimated(n_iterations)

Start with empty tables to accumulate results into

tmt_quant <- get_empty_tmt_norm()

tmt_norm <- get_empty_tmt_norm()

Loop over all the raw files in batch 1

for(i in 1:length(result_files)) {

 # Get the files in fraction order (not alphabetic

sort order)

 file_name <-

result_files[grepl(paste0("Fr",i,".mzML"),result_files)

]

 mzML_file_name <- file.path("large-data",

"MSV000086195","ccms_peak",

 file_name)

 ms_file <- readMSData(mzML_file_name, msLevel = 2,

mode = "onDisk")

 # Since the reporters are all in the 126-132 m/z

range, give the

 # quantify() function less to deal with

 ms_file <- filterMz(ms_file, c(126, 132))

 # quantify the observed TMT fragment tags and

report the peak maximum

 qty <- retry(quantify(ms_file, method="max",

TMT10),

 when = "Can not open file",

 interval = 10,

 max_tries = 5

)

 rm(ms_file)

 gc()

 # return the intensities using the `exprs()`

function and

 # fix the column names to be syntactically correct

 intensities <- exprs(qty)

 colnames(intensities) <- reporters

 # combine the columns and then drop missing values

 # turn the output into a tibble and change the

column types

 # to the appropriate types and finally convert all

intensities to

 # their log2() value

 quant <- cbind(sample_type="",

 data_type = "raw",

 fraction=i,

scan_num=qty@featureData@data$seqNum,

precursorInten=qty@featureData@data$precursorIntensity,

 intensities) |>

 na.omit() |>

 as_tibble(.name_repair = "unique") |>

 dplyr::mutate(across(3:15, as.numeric)) |>

 dplyr::mutate(across(1:2, as_factor)) |>

 dplyr::mutate(across(5:15, log2))

 # normalize the quantities using the standard

quantile normalization

 qty_norm <- normalise(qty, "quantiles")

 # get the intensities and perform the same steps to

get the

 # normalized version of the quantities

 inten_norm <- exprs(qty_norm)

 colnames(inten_norm) <- reporters

 norm <- cbind(sample_type="",

 data_type = "norm",

 fraction=i,

 scan_num=qty@featureData@data$seqNum,

precursorInten=qty@featureData@data$precursorIntensity,

 inten_norm) |>

 na.omit() |>

 as_tibble(.name_repair = "unique") |>

 dplyr::mutate(across(3:15, as.numeric)) |>

 dplyr::mutate(across(1:2, as_factor)) |>

 dplyr::mutate(across(5:15, log2))

 # Bind the just created row to the final output

 tmt_quant <- rbind(tmt_quant, quant)

 tmt_norm <- rbind(tmt_norm, norm)

 # update the progress bar

 knitrProgressBar::update_progress(pb)

}

The variables tmt_quant and tmt_norm contain the raw and
normalized reporter intensities for every scan in Batch 1. I’d
like to do a quick check on what the normalization process
actually did. There are many ways to normalize data of the
type in this example, so if quantile normalization doesn’t
seem to be removing the nonbiological variation from the
internal controls, I can choose from the other options for the
method parameter. The MSnbase documentation for the
normalise() function gives several different options to choose
from.
In the following, I will check the intensity distribution using
the stats function density(), which is a kernel density
estimation method. The output is then plotted in Figure 5.6.

Figure 5.6 Comparison of raw and normalized

responses for all the reporters in Fraction 1 in Batch

1.

First, set up the names of the reporters (samples) and create
the empty tables.

reporters <- c("tmt_126", "tmt_127N", "tmt_127C",

"tmt_128N", "tmt_128C",

 "tmt_129N","tmt_129C", "tmt_130N",

"tmt_130C", "tmt_131")

raw_density_table <- tibble(

 reporter = character(),

 x = numeric(),

 y = numeric()

)

norm_density_table <- raw_density_table

The tmt_quant table stored the 10 reporters in columns 6-15
so the density calculation is performed with a loop recording
the density of each reporter. Since this is just a quick check, I
only want to make an overlay plot of one of the 33 fractions.
That’s why I have tmt_quant$fraction==1 in the selection of
the rows from the table. There is an interfacing requirement
between the inputs to the stats package and the output of
this type of selection using dplyr. To pass a vector into the
density() function, I have to use the dplyr function pull() to
convert the selected column (and rows) from a tibble to a
vector.

for(i in 6:15) {

 raw_density <-

density(pull(tmt_quant[tmt_quant$fraction==1,i]),

na.rm=TRUE)

 raw_density_table <- rbind(raw_density_table,

tibble(reporter=reporters[i-5],

 x=raw_density$x,

 y=raw_density$y))

}

The density calculation is performed in the same way for the
tmt_norm table. Again, for this quick look, I’m only checking

fraction 1.

for(i in 6:15) {

 norm_density <-

density(pull(tmt_norm[tmt_norm$fraction==1,i]),

na.rm=TRUE)

 norm_density_table <- rbind(norm_density_table,

tibble(reporter=reporters[i-5],

 x=norm_density$x,

 y=norm_density$y))

}

Now, the two plots can be constructed and then combined
into a single figure using the ggarrange() function that’s part
of the ggpubr package.

fract1_raw <-

 ggplot(raw_density_table, aes(x=x, y=y)) +

 coord_cartesian(xlim=c(8,20), ylim=c(0,0.3)) +

 geom_line(aes(color=reporter)) +

 xlab("Response") +

 ylab("Density") +

 theme_classic() +

 theme(legend.position="none") +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 ggtitle(label = "Density of Raw Responses",

 subtitle = "Batch 1 - Fraction 1")

fract1_norm <-

 ggplot(norm_density_table, aes(x=x, y=y)) +

 coord_cartesian(xlim=c(8,20), ylim=c(0,0.3)) +

 geom_line(aes(color=reporter)) +

 xlab("Response") +

 ylab("Density") +

 theme_classic() +

 theme(legend.position="none") +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 ggtitle(label = "Density of Normalized

Responses",

 subtitle = "Batch 1 - Fraction 1")

p_norm_density <- ggarrange(fract1_raw, fract1_norm,

 ncol = 1, nrow = 2,

 labels = c("A", "B"))

print(p_norm_density)

From Figure 5.6a, there do appear to be differences in the
distributions of responses from the internal controls in
fraction 1 when I look at all 10 reporters. Since these are
internal controls, this variation cannot originate in any of the

interesting biological variations this experiment is intended
to discover.
It’s clear from Figure 5.6b that quantile normalization
changed the intensity responses so that any individual
reporter intensity looks to have come from a much more
similar distribution, which is what you would expect if most
nonbiological variation was removed. Since these are internal
controls, there is no biological variance, so now, when the
normalized values are used, I should see no significant
difference in the means, as was seen in Figure 5.4 and
established by the -test and the very low -value for the null
hypothesis. Now, I will repeat the tests with the normalized
intensities for the internal control.
Starting with the full set of normalized responses, first
replace the individual IC TMT intensities with the normalized
intensities.

tmt_norm <- tmt_norm |>

 dplyr::select(-c(precursorInten)) |>

 dplyr::mutate(sample_type="control")

Next, match up the normalized values for the control samples
with the fraction and scan number, and rearrange the table
so the column order is the same as the raw quantitated data.

ic_norm <- ic_tmt_log2 |>

 dplyr::select(-c(contains('tmt'),sample_type,

data_type)) |>

 dplyr::left_join(tmt_norm, join_by(fraction,

scan_num)) |>

 dplyr::relocate(data_type) |>

 dplyr::relocate(sample_type)

Finally, bind the normalized and raw tables to make a boxplot
to visualize the comparison:

ic_levels <- rbind(ic_tmt_log2, ic_norm)

Like before, this code pivots the responses into a shape that
allows making boxplots and running an -test. Also, here I
make sure the reporter column created in the pivot is treated
as a factor so that categorical statistics will handle the
reporter names correctly.

ic_levels_tbl <- ic_levels |>

 tidyr::pivot_longer(!c(sample_type,

data_type, fraction, scan_num),

 names_to = "reporter", values_to

= "intensity") |>

 dplyr::mutate(across(1:4, as_factor)) |>

 dplyr::mutate_at('reporter', as_factor)

The following creates a boxplot of each reporter for all of the
normalized responses for the internal control peptides next
to the raw intensity boxplot.

p_norm_boxplot <- ic_levels_tbl |>

 ggplot() +

 geom_boxplot(aes(reporter, intensity,

color=data_type)) +

 xlab("Reporter") +

 ylab("log2(intensity)") +

 theme_classic() +

 theme(axis.text.x = element_text(angle = 45, hjust

= 1)) +

 theme(plot.title = element_text(hjust = 0.5, vjust

= 2)) +

 theme(legend.position = "top") +

 theme(legend.title = element_blank()) +

 ggtitle(label = "Raw and Normalized Internal

Control Intensities - Batch 1")

print(p_norm_boxplot)

It certainly appears from Figure 5.7 that quantile
normalization has moved the internal control responses
toward a central value. The way to see if this is true is to
repeat the -test from Figure 5.5 on the normalized
responses.

Figure 5.7 Comparison of raw and normalized

responses for all the internal control reporters in

Batch 1.

Compute the observed -score from the normalized data.

norm_observed_f_statistic <- ic_levels_tbl |>

 dplyr::filter(data_type=="norm") |>

 specify(intensity ~ reporter) |>

 hypothesize(null = "independence") |>

 calculate(stat = "F")

Compute the distribution of -scores from randomizing the
normalized intensities (5000 different random assignments of
intensity to the reporter).

norm_null_dist <- ic_levels_tbl |>

 dplyr::filter(data_type=="norm") |>

 specify(intensity ~ reporter) |>

 hypothesize(null = "independence") |>

 generate(reps = 5000, type = "permute") |>

 calculate(stat = "F")

Visualize the -score for the normalized data and the
distribution of -scores for the null hypothesis (Figure 5.8).

p_norm_null_dist <- norm_null_dist |>

 visualize() +

 shade_p_value(norm_observed_f_statistic, direction

= "greater") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 xlab("F-Statistic") +

 ylab("Count") +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "Sampling-Based Null Distribution

(n=5000)",

 subtitle =

 paste0("Normalized Internal Control

Intensities: F = ",

 round(norm_observed_f_statistic,

digits=4))

)

print(p_norm_null_dist)

Figure 5.8 Overlay of the observed -score with the

distribution of -scores for the null hypothesis that

the intensity and reporter are independent.

And finally, compute the -value for getting the observed -
score from the normalized data at random.

calculate the p-value from the F statistic and null

distribution

p_value <- norm_null_dist |>

 get_p_value(obs_stat = norm_observed_f_statistic,

direction = "greater")

p_value

A tibble: 1 x 1

p_value

<dbl>

1 0.997

After normalization, the chance of getting an -score as large
as the observed value by random is over 99%, so I cannot
reject the null hypothesis that the reporters and the
intensities are independent. This means that the
normalization process removed the variation from the
internal control. However, if normalization removes both
experimental and biological variation, it will have failed. The
way to test that is to look at one of the proteins in the
experiment where the authors found evidence for biological
variation and see if it’s still there.

5.3.4 Evaluating Peptide Reporter Intensity

Variation

To conclude this chapter, I will analyze one of the proteins
indicated in the Ubaida-Mohien et al. 2022 manuscript. The
gene MT-CO2 corresponds to the human protein Cytochrome C
Oxidase Subunit 2 (COX2_HUMAN); its Uniprot ID is P00403
[144]. There are multiple peptides identified for this protein
in all three batches of the study, which makes it a good
candidate to dig into the details of how to apply the
normalization methods described above to a signal expected
to have biological variation. In the manuscript, the authors
chose to use median polishing, which was described by
Herbrich et al. in 2013 [145] and by Kammers et al. in 2015
[146]. My goal in this analysis has not been to reproduce the
analysis of Ubaida-Mohien et al. but rather focus on the
internal controls and what I could learn about how well-
controlled the experiment was via an orthogonal approach.
Sticking with that idea, I want to see if the normalization
method I chose, quantile normalization, which removed the

experimental variation from the internal control, left any
expected biological variation in proteins identified in the
human samples.
The first step is to find all of the peptide spectra matches in
the search performed by the authors. In this analysis, I’ll
focus on only one protein, but any protein could be used. In
fact, an entire replicate analysis could be performed using
this approach, but again, that’s not my objective.
I’ll want to break up the analysis much like I did in Chapter
3. Since the mzID files I am looking at now are different from
the ones generated by the internal control search using X!
Tandem, I’ll need to validate the XML files before trying to
parse them. This is one of the benefits of using XML for data
like mzID files.

XML Schema validation

mzID_valid <- function(mzID_filename, id_schema) {

 doc <- read_xml(mzID_filename)

 xml_validate(doc, id_schema)

}

Next, I define a function to produce an empty peptide
spectrum match. The .mzid files deposited in MassIVE appear
to have been generated by Mascot [147], a popular
commercial peptide search engine. Since the scores and
other data have different names in the controlled vocabulary
used by mzID, I will create a Mascot-specific PSM table. You
could make a generic one if that served your needs better.

Create empty tibble to hold peptide-spectrum match

data

empty_psm <- function() {

 tbl_item <- tibble(

 batch = numeric(),

 fraction = numeric(),

 seq = character(),

 charge = numeric(),

 ex_mz = numeric(),

 calc_mz = numeric(),

 match_score = numeric(),

 exp_score = numeric(),

 scan = numeric(),

 rt = numeric(),

 mods = character(),

 base_filename = character()

)

 tbl_item

}

Since the mzID files generated by Mascot use different
controlled vocabulary terms, the variable names change from
the X! Tandem example in Chapter 3.

Extract PSM data to be added to a table

extract_mascot_match <- function(psm) {

 m1 = str_match(psm$spectrum.title, "_Batch(\\d+)_")

 m2 = str_match(psm$spectrum.title,

"_BRPhsFr(\\d+)")

 tbl_item <- tibble(

 batch = as.numeric(m1[1,2]),

 fraction = as.numeric(m2[1,2]),

 seq = psm$pepseq,

 charge = psm$chargestate,

 ex_mz = psm$experimentalmasstocharge,

 calc_mz = psm$calculatedmasstocharge,

 match_score = psm$mascot.score,

 exp_score = psm$mascot.expectation.value,

 scan = psm$acquisitionnum,

 rt = as.numeric(psm$scan.start.time),

 mods = psm$modification,

 base_filename =

str_split_1(psm$spectrumFile,".mgf")[1]

)

 tbl_item

}

The same holds for finding the top-scoring scans – the score
is the mascot.score variable for these files.

top_mascot_scans <- function(all_id) {

 all_id <- all_id |>

 arrange(acquisitionnum)

 pep_score_best <- 0.0

 curr_scan <- all_id[1,]$acquisitionnum

 pep_tbl <- empty_psm()

 for(i in 1:length(all_id$pepseq)) {

 peptide <- all_id[i,]

 pep_scan <- peptide$acquisitionnum

 if(pep_scan == curr_scan) {

 if(peptide$mascot.score > pep_score_best) {

 pep_best <-

extract_mascot_match(peptide)

 pep_score_best <- peptide$mascot.score

 }

 next

 } else {

 pep_tbl <- bind_rows(pep_tbl, pep_best)

 pep_best <- extract_mascot_match(peptide)

 curr_scan <- peptide$acquisitionnum

 pep_score_best <- peptide$mascot.score

 }

 }

 pep_tbl

}

The files in the MassIVE repository for the MSV000086195 study
follow the mzIdentML1.1.0.xsd schema, so I’ll validate the
.mzid files using that schema.

get the schema for the mzML files

mzID_schema <-

read_xml(file.path("schema","mzIdentML1.1.0.xsd"))

Now, instead of the X! Tandem results for the internal control
that I generated, I will get all of the files in the repository
result directory generated by Mascot for the study.

get a list of all the mzIdentML files generated by

Mascot

result_files = list.files(

 file.path("large-data", "MSV000086195","result"),

 pattern=".mzid")

This chunk of code searches the mzIdentML files from the
study for the peptides associated with the target protein
mentioned above (COX2_HUMAN).

create an empty tibble to accumulate desired matches

all_top_psm <- empty_psm()

n_iterations <- length(result_files)

pb <-

knitrProgressBar::progress_estimated(n_iterations)

read and extract data from each mzIdentML file using

a loop

for(filename in result_files) {

 knitrProgressBar::update_progress(pb)

 full_path = file.path("large-data", "MSV000086195",

"result",

 filename)

 if(!mzID_valid(full_path, mzID_schema)) {

 print(paste0(filename," file not valid

mzIdentML"))

 next

 }

 # The PSM function calls mzID with verbose=TRUE

 # to avoid excess output, call mzID directly

 all_psm <- mzID(full_path, verbose=FALSE) |>

 mzID::flatten() |>

 as("DataFrame") |>

 as("PSM")

 id <- as_tibble(all_psm)

 # If the object from mzID() is empty, skip to the

next file

 # otherwise, keep only the peptide matches that

contain at least one

 # TMT10plex modification

 if(nrow(id) < 1) {

 next

 } else {

 id <- id |>

 dplyr::filter(grepl("COX2_HUMAN",

accession, ignore.case = TRUE)) |>

 dplyr::filter(str_detect(modification,

'229.1629'))

 }

 # Any particular file may have no matches for the

protein of interest

 if(length(id$spectrumid) < 1) {

 next

 }

 # The top_scans() function returns the highest-

scoring unique MS2

 # spectra, which are added to the table

 kept_peptides <- top_mascot_scans(id)

 all_top_psm <- bind_rows(all_top_psm,

kept_peptides)

}

Now, sort the final table for use in finding the reporter
intensities for the peptides from the selected protein.

sort the table by batch, fraction, and scan number

prot_id <- arrange(all_top_psm, batch, fraction, scan)

Like with the internal control, use the scan numbers for the
identified peptides for COX2_HUMAN to get the reporter
intensities and create a table that captures the reporter
intensity for each observed peptide in a column with the
reporter name.

Create an accumulator tibble

prot_tmt_inten <- get_empty_tmt()

use a knitr compatible progress bar for a potentially

long-running loop

n_iterations <- length(prot_id$batch)

pb <-

knitrProgressBar::progress_estimated(n_iterations)

prev_raw_file <-""

for(prot_index in 1:length(prot_id$batch)) {

 knitrProgressBar::update_progress(pb)

 raw_file_name <- file.path("large-

data","MSV000086195","ccms_peak",

paste0(prot_id$base_filename[prot_index],

 ".mzML"))

 selected_prot <- mzR::openMSfile(raw_file_name,

backend = "pwiz")

 tmt_inten <- get_reporters(selected_prot, prot_id,

prot_index, "prot")

 prot_tmt_inten <- bind_rows(prot_tmt_inten,

tmt_inten)

 mzR::close(selected_prot)

 rm(tmt_inten)

 rm(selected_prot)

 gc()

}

Now process the results in the same way I did for the internal
control. First, select Batch 1:

prot_tmt_inten <- dplyr::filter(prot_tmt_inten,

batch==1) |>

 dplyr::select(-c(batch, pep_seq))

Like before, there is no point in keeping peptides that are
missing an intensity for a particular sample.

row_sub = apply(prot_tmt_inten[,5:14], 1, function(row)

all(row != 0))

prot_tmt_inten <- prot_tmt_inten[row_sub,]

And like before, I will perform the log base two
transformation to bring all of the intensity values into the
same range.

transform intensity columns to log2()

prot_tmt_log2 <- prot_tmt_inten |>

 dplyr::mutate(across(5:14, log2))

Here, I fill in the sample_type to be just prot. I could use any
string, especially if I were analyzing different proteins for
differences between them.

tmt_norm <- tmt_norm |>

 dplyr::mutate(sample_type="prot")

For the internal control peptides, this step was performed in
Chapter 3. The object is to join the peptide spectrum match
table with the reporter intensity table by fraction and scan
number (since I have already filtered the data to contain only
Batch 1). The left_join() function keeps all of the rows of
prot_tmt_log2. After that, I just cleaned up a little by moving
the sample_type and data_type columns to be first and second
in the table.

prot_norm <- prot_tmt_log2 |>

 dplyr::select(-c(contains('tmt'), sample_type,

data_type)) |>

 dplyr::left_join(tmt_norm, join_by(fraction,

scan_num)) |>

 dplyr::relocate(data_type) |>

 dplyr::relocate(sample_type)

prot_tmt <- prot_tmt_log2 |>

 tidyr::pivot_longer(!c(sample_type,

data_type, fraction, scan_num),

 names_to = "reporter", values_to

= "intensity") |>

 dplyr::mutate(across(1:3, as_factor)) |>

 dplyr::mutate_at('reporter', as_factor)

The code below displays all the reporters for COX2_HUMAN
as boxplots, one for each reporter (Figure 5.9). Here, I am
using only the normalized data. The next steps are the same
as before: test what visually looks like the difference between
the reporters using the -test and computing the -value.

p_norm_cox2 <- prot_tmt |>

 ggplot() +

 geom_boxplot(aes(reporter, intensity)) +

 xlab("Reporter") +

 ylab("log2(intensity)") +

 theme_classic() +

 theme(axis.text.x = element_text(angle = 45, hjust

= 1)) +

 theme(plot.title = element_text(hjust = 0.5, vjust

= 2)) +

 ggtitle(label = "Normalized COX2 Reporter

Intensities - Batch 1")

print(p_norm_cox2)

Figure 5.9 Normalized intensities for all the reporters

of the human COX2 protein in Batch 1.

Computing the -score for the normalized peptide intensities
being independent of the reporter.

prot_observed_f_statistic <- prot_tmt |>

 specify(intensity ~ reporter) |>

 hypothesize(null = "independence") |>

 calculate(stat = "F")

Randomize the reporter value for each intensity and compute
the -score. By doing this 5000 times, I get a distribution
that is pretty close to the theoretical -distribution, but
without assuming the -distribution is the actual distribution
that is present in the data.

prot_null_dist <- prot_tmt |>

 specify(intensity ~ reporter) |>

 hypothesize(null = "independence") |>

 generate(reps = 5000, type = "permute") |>

 calculate(stat = "F")

Visualize the observed -score and the distribution of
possible -scores that can occur by random chance (Figure
5.10).

p_norm_prot_f_test <- prot_null_dist |>

 visualize() +

 shade_p_value(prot_observed_f_statistic, direction

= "greater") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 xlab("F-Statistic") +

 ylab("Count") +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "Sampling-Based Null Distribution

(n=5000)",

 subtitle =

 paste0("Normalized COX2 Reporter

Intensities: F = ",

 round(prot_observed_f_statistic,

digits=4))

)

print(p_norm_prot_f_test)

Figure 5.10 Overlay of the observed -score with the

distribution of -scores for the Null Hypothesis that

the peptide intensities and reporters are

independent.

And finally, compute the -value that the observed -score
occurred by chance.

p_value <- prot_null_dist |>

 get_p_value(obs_stat = prot_observed_f_statistic,

direction = "greater")

p_value

A tibble: 1 x 1

p_value

<dbl>

1 0.176

The post-normalization -value for the COX2_HUMAN
protein reported as differentially expressed is far below the
normalized internal control, which means that the
normalization process did not remove an excessive amount of
biological variation. Because this hypothesis test is just to
determine if all the samples came from the same distribution,
the resulting -value does not suggest that all of the samples
are different, which is, in fact, not terribly likely based on the
experimental design. So, by itself, this -value does not
establish that all of the means could not have been drawn
from the same population, as there is still a ~16% chance of
getting these differences by random. However, given the
experimental design, I have good reason to believe that of the
10 samples represented, some were either from the same
group (NA or MA) or included technical replicates and should
skew the -value a little high. A reasonable next step is to
perform multiple t-tests between each pair of samples to see
which ones might be different from each other. That could
then be matched to the experimental design to draw
conclusions about the differential expression of the
COX2_HUMAN protein between the two groups of
individuals.
The rstatix package has tidy statistical tests, including
multiple t-tests, which compare each reporter against each
other reporter. Since each reporter value for a given peptide
can be paired (obtained from the same measurement), I’m
using a paired t-test and dropping any pairs that fail to meet
the 0.05 threshold.

library(rstatix)

pwc <- prot_tmt |>

 pairwise_t_test(intensity ~ reporter,

p.adjust.method = "none") |>

 dplyr::select(-c(n2,p.signif,p.adj,p.adj.signif))

|>

 dplyr::filter(p <= 0.05)

pwc

A tibble: 5 x 5

.y. group1 group2 n1 p

<chr> <chr> <chr> <int> <dbl>

1 intensity tmt_127N tmt_128C 34 0.0281

2 intensity tmt_128N tmt_128C 34 0.0196

3 intensity tmt_128C tmt_129N 34 0.0448

4 intensity tmt_126 tmt_130N 34 0.0427

5 intensity tmt_128C tmt_130N 34 0.0112

The ggpupr package used earlier to combine multiple plots
into a single plot also has a very nice way to visualize the
multiple t-tests, showing the pairs of reporters whose means
are potentially different after normalization.

p_norm_prot_t_test <- prot_tmt |>

 ggboxplot(x = "reporter", y = "intensity") +

 stat_pvalue_manual(pwc, hide.ns = TRUE, label =

"p",

 y.position = 21, step.increase =

0.1,

 ggtheme = theme_classic()) +

 xlab("TMT Reporter") +

 ylab("log2(Intensity)") +

 theme(axis.text.x = element_text(angle = 45,

hjust = 1, size = 10)) +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 ggtitle(label = "Normalized COX2 Expression -

Batch 1",

 subtitle = "Significant p-values Between

Reporters"

)

print(p_norm_prot_t_test)

The multiple t-tests (uncorrected for false discovery rate)
show that five of the differences could be significant (Figure
5.11). It’s important to note that this analysis could be
improved by combining all three batches. Even though they
contained different individuals, all three could be combined
for normalization purposes. Further, it would increase the
number of observations to something larger than n=34 which
is a rather small sample size given the variance, even post-
normalization. An increase in the number of observations of
each peptide would improve the estimation of the means and
lower the variance, thus increasing the power of the
hypothesis test.

Figure 5.11 Boxplot of normalized reporter values for

human COX2 reporter intensities showing the pairs of

reporters with significant differences.

5.4 Summary

This chapter has covered a wide range of data analysis
techniques associated with profile and centroided mass
spectra, as well as calculating molecular weights from
formulas and formulas from masses. I have used several
different methods for reading the various kinds of files that
mass spectra can be stored in. By combining packages from
Bioconductor, CRAN, and GitHub, it is possible to assemble a
data analysis pipeline that is custom fit for your needs. You

may find that a Bioconductor package will do everything you
need, or you may decide that one does some of what you
need, and you can take over the analysis using a combination
of base R and the tidyverse and tidymodels packages. It’s
important to keep on the lookout for tools that were
developed for other analytical techniques when analyzing
mass spectrometry data. In this chapter, I used a
normalization method originally developed for genomics
studies and showed that it can be applied to mass
spectrometry measurements.
In this chapter, I used stand-alone mass spectra or extracted
spectra from high-performance liquid chromatography-mass
spectrometry (HPLC-MS) and tandem mass spectrometry
(MS/MS) measurements. In the next chapter, I will show how
to analyze signals generated by mass spectrometers that are
in the form of chromatographic data. Liquid chromatography-
mass spectrometry (LC-MS) and LC-MS/MS are incredibly
powerful techniques that are widely used for both qualitative
and quantitative measurements.

Chapter 6

Analysis of Chromatographic Data

from Mass Spectrometers

6.1 Introduction

This chapter will show how to analyze chromatography data
generated using mass spectrometry. There are many
similarities between chromatography data generated by
different chemical analyzers. However, important aspects are
introduced by the specificity, selectivity, and sensitivity of
mass spectrometers. Chromatography systems produce data
where the x-axis is time, and the characteristics of that data
are described mainly in terms of chromatography peaks. In
Chapter 4, I introduced the concept of chromatographic
peaks generated from both full-scan mass spectra (MS) and
selected reaction monitoring (SRM). While there are many
types of chromatography, this chapter will focus mainly on
liquid chromatography (LC) when paired with either single
(MS) or multiple-stage mass spectrometry (MS/MS). Many
approaches described in this chapter can be applied to gas
chromatography (GC) and have often been applied to mass
spectra traces, especially time-of-flight (TOF) m/z data,
where the x-axis starts as time.

6.2 Chromatographic Peak Basics

Chromatographic peaks have characteristics determined by
both the physics and chemistry of the separation process and
by the mass spectrometer. Peaks are signals that represent
compounds of interest when they can be detected above the
various kinds of noise that are present in chromatography

and mass spectrometry data. While it is simple to state what
a chromatography peak is, it is not so easy to give precise
definitions of the words “detected” and “noise.” In other
words [148], when does a collection of data points represent
a deterministic, which carries chemical information, and
when are data points random, representing imperfections in
the instrumentation?
To analyze chromatography data using R, you must select
precise signal and noise definitions that match what is
observed in liquid chromatography-mass spectrometry (LC-
MS). To start, I’ll explore some characteristics of
chromatographic peaks using R, and from there, I’ll describe
peak detection and various techniques for improving the
amount of chemical information in chromatographic data.

6.2.1 Peak Shape Characteristics

As introduced in Chapter 4, I use exploratory data analysis
techniques to describe the important concepts of
chromatographic peaks. In this example, I’ll use real-world
chromatograms and show how to extract the key
characteristics of peaks. In this code, I’ll use the
readSRMData() function from the MSnbase package and modify
the data frame holding the feature data to add an index to
the chromatograms.

file_name <- "sample_011.mzML"

srm_filename <- file.path("data", "chrom", file_name)

srm <- readSRMData(srm_filename)

Get a data.frame from the Feature data using the

fData() accessor function

id_df <- fData(srm)

id_df$srm_index <- row(id_df)[,1]

names(id_df)

[1] "chromatogramId"

"chromatogramIndex"

[3] "polarity"

"precursorIsolationWindowTargetMZ"

[5] "precursorIsolationWindowLowerOffset"

"precursorIsolationWindowUpperOffset"

[7] "precursorCollisionEnergy"

"productIsolationWindowTargetMZ"

[9] "productIsolationWindowLowerOffset"

"productIsolationWindowUpperOffset"

[11] "srm_index"

These are the default names created by readSRMData(), and
the product and precursor names are

colnames(id_df)[4] <- "precursor"

colnames(id_df)[8] <- "product"

print(id_df[,c(1,11,4,8)])

chromatogramId srm_index precursor product

1 SRM Qual 1 468.2 396.2

2 SRM Quant 2 468.2 414.2

3 SRM Quant IS 3 472.3 400.3

4 SRM Qual IS 4 472.3 418.3

Based on the content of the feature data structure, this file
contains four chromatograms, as described in Section 4.4.2.
There is a quantifier trace, a qualifier trace from the
quantifier precursor m/z, an isotopically labeled quantifier
internal standard (IS) (+4 Da) trace, and a qualifier trace
from the IS. The data from each trace is accessible by
indexing the srm object using the row number in the table,
which I’ve added as a column for convenience.
Now, I can extract the retention time (x-axis) and the
intensity (y-axis) values using the accessor functions from

MSnbase. The raw time data is reported by rtime() in units of
minutes, but it is more convenient to work in seconds,
especially when working with fast acquisition rates.

SRM Quant is the second element in the srm object

t_raw <- rtime(srm[2]) * 60

y_raw <- intensity(srm[2])

Next, I’ll define the time range that represents valid
acquisition. Sometimes, the very beginning of an acquisition
has artifacts due to valve switching or other anomalies that
should be ignored. It is also common for the mass
spectrometer to enter acquisition mode before the liquid is
diverted to the ion source. This results in no signal for a
period, followed by an abrupt shift once ions are generated.
If the liquid is diverted before the acquisition has ended, the
signal will eventually drop to a lower level as the valve
closes. When working with methods like these, it’s usually
necessary to avoid including acquisition artifacts in the
analysis.

define acquisition time range (s)

acquisition_start_t <- 0

acquisution_end_t <- max(t_raw)

t <- t_raw[t_raw > acquisition_start_t & t_raw <

acquisution_end_t]

y <- y_raw[t_raw > acquisition_start_t & t_raw <

acquisution_end_t]

Now, I want to know the sampling frequency of the data.
How fast was the data acquired? This frequency will tell me
the upper limit on the frequency of noise.

get_sampling_freq <- function(t) {

 delta_t <- array(dim=length(t)-1)

 for(i in 1:length(t)-1) {

 delta_t[i] <- t[i+1] - t[i]

 }

 median(1/delta_t)

}

I get the median sampling rate across the acquisition window
using this function.

sampling_frequency <- get_sampling_freq(t)

print(sprintf("Sampling rate: %0.2f Hz",

sampling_frequency))

[1] "Sampling rate: 16.67 Hz"

It is helpful to have a generic chromatogram plotting function
that creates a base plot that can be modified with additional
information about the peak. Here I give such a function
called chrom_plot(). The plotting function requires a vector of
x-axis data points and a vector of y-axis data points. It also
requires a vector of y-axis values representing data to be
drawn point-to-point. This is intended to hold either the raw
or smoothed data. Data smoothing will be covered in detail in
Sections 6.3.2 and 6.4. The function includes the ability to
add optional titles, subtitles, and an option to plot points.
This is an example of creating a ggplot() object and then
conditionally adding new layers.

chrom_plot <- function(x_vec, y_points, y_line,

 main_title=NULL, sub_title=NULL,

 breaks=10, points=FALSE) {

 p <- ggplot() +

 scale_x_continuous(n.breaks = breaks) +

 scale_y_continuous(labels = inten_label) +

 geom_line(aes(x=x_vec, y=y_line),

linewidth=0.75, color=pal$gray) +

 xlab("Retention Time (sec)") +

 ylab("Intensity (counts/sec)") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

)

 if(!is.null(main_title)) {

 p <- p + ggtitle(label = main_title)

 }

 if(!is.null(sub_title)) {

 p <- p + ggtitle(label= main_title, subtitle =

sub_title)

 }

 if (points==TRUE) {

 p <- p + geom_point(aes(x=x_vec, y=y_points),

shape=1)

 }

 p

}

A quick plot of the quantifier trace from this sample will give
some idea about the structure of the data. For now, I’ll just
pass the raw y-values as the filtered data to connect the data
points with a line.

p <- chrom_plot(t, y_points = y, y_line = y,

 main_title = "Sample 11 Quantifier",

 sub_title = sprintf("Sampling rate:

%0.1f Hz",

sampling_frequency),

 points = TRUE)

print(p)

In Figure 6.1, there could be two peaks of interest: the large
peak centered around 8 seconds and a smaller peak near 12
seconds. The spike close to the beginning of the trace is
probably not part of the chemical information. For now, I’ll
assume that chemical information about analytes in this
method starts after 2 seconds to avoid artifacts. It may be
necessary to revisit this assumption later using the tools
discussed in Section 6.4.

Figure 6.1 Plot of the chromatogram for quantifier

ion in Sample 11.

acquisition_start_t <- 2

Truncate data to include only the acquisition window

t <- t_raw[t_raw > acquisition_start_t & t_raw <

acquisution_end_t]

y <- y_raw[t_raw > acquisition_start_t & t_raw <

acquisution_end_t]

First, I’ll focus on the large peak at 8 seconds. The important
features of any peak are its apex intensity and time, the peak
width at 50% of the maximum height (full width at half
maximum [FWHM]), peak symmetry, and where the peak
begins and ends. The peak symmetry can indicate

chromatographic performance, so it is often measured by
looking at the distance to the apex on the left and right sides
of the peak at both the 50% level and the 10% level. Finally,
since mass spectrometers are concentration detectors, the
total area of the peak is related to the concentration of the
chemical being detected. Finding the area of a peak
necessitates ascribing a peak start time and a peak end time,
as well as any baseline offset created by the instrument.

6.2.2 Peak Location

First, I want to find the location of the peak. Visually, its apex
is approximately 8 seconds. I want both the t and y-values, so
I’ll search for the apex in this compound’s expected retention
time range.

expected RT range (in t units)

expected_rt <- 8

rt_tolerance <- 2

The rt_tolerance of 2 seconds is only needed in cases where
the global maximum is not from the peak of interest. The
expected_rt and rt_tolerance predefine a region of interest.
In other peak-picking situations, the region of interest may
not be known in advance. There are functions in xcms to
locate regions of interest that I’ll show later. We’ll work
through the example where the region of interest is known.
The function get_peak_apex() takes the time and intensity
vectors and returns a list of possible index values for local
maxima in the region of interest.

get_peak_apex <- function(t, y, expected_rt,

rt_tolerance) {

 range_start <- expected_rt - rt_tolerance

 range_end <- expected_rt + rt_tolerance

 apex <- max(y[which(t > range_start & t <

range_end)])

 apex_index_list <- which(near(apex, y))

 apex_index_list[which.min(abs(t[apex_index_list]-

expected_rt))]

}

Calling get_peak_apex() will return the apex index, a single
index that represents the intensity (y-axis) array index of
maxima closest to the expected retention time.

apex_index <- get_peak_apex(t, y, expected_rt,

rt_tolerance)

print(sprintf("Index %d: RT=%.2fs Intensity=%.0f",

 apex_index, t[apex_index],

y[apex_index]))

[1] "Index 98: RT=7.87s Intensity=214400"

Before moving on to the other characteristics of a peak, it is
important to address the issue of characterizing the baseline

on which the chemical data is superimposed. The apex result
above is a good example of a peak parameter that could be
incorrect due to an elevated baseline. The peak apex
intensity might not be properly measured from zero. Some
instruments generate a curved, sloping, or simply elevated
baseline that will distort many critical aspects of a peak. This
step in data preparation has become a field of study of its
own. Using packages and directly coding solutions in R to
approximate a baseline will be shown in the next section.

6.2.3 Baseline Correction

Height and area calculations are performed relative to a
baseline, which usually represents the noise floor when no
compound is present. There are many ways to estimate
baselines, and depending on your data, some methods may
work better than others. The R package baseline [149, 150]
is a good starting point for testing a variety of baseline
algorithms. The baseline package was designed to handle
multiple traces in a matrix, so before it can be used, the time
and intensity data have to be put into a matrix where each
column is a time point in the trace. For the examples in this
chapter, I’ll use baseline.als method, which is an
asymmetric least squares baseline described by Eilers [151–
153]. The basic idea is to use weighted least squares to fit
the data, initially assigning a weight of 1 to each data point in
the trace. This ensures that the fit maximizes fidelity to the
data. The algorithm then iteratively assigns a lower weight
(parameter p) to data points above the fit and sets the
weights below the fit as 1-p. This way, the resulting fit values
come closer to the least squares solution for the data below
the fit. The chemically informative data will eventually
(usually in 5–10 iterations) be driven to low weight and
ignored by the fit. The data normally associated with the
baseline will have a weight close to 1 and control the overall
fit. The approach described by Eilers is a Whittaker smoother

[154], which adds a penalty to the least squares cost function
based on the value of the derivative of the data. The
derivative penalty is scaled (the parameter lambda) to ensure
that the resulting fit is as smooth as desired, given the
roughness of the data. Different derivatives, or in discrete
terms, differences, can be used for the roughness penalty.
Eilers and Boelens suggested using the second derivative of
the raw data, while others have suggested using the first
derivative [155]. The higher the derivative, the larger the
smoothing term. The baseline package uses the second
derivative to constrain smoothness, so the values for lambda

will be different for other Whittaker smoothers that use other
difference orders.

sp <- Matrix::t(y)

colnames(sp) <- t

new_sp <- baseline(sp, lambda = 10, p = 0.005,

method='als')

base_line <- as.vector(new_sp@baseline)

To see what the different baseline algorithms do, I’ll plot
them and zoom in on how they follow the noise and how they
behave in the regions around peaks.

p_baseline <- p +

 ggtitle(label="Asymmetric Least Squares Baseline",

 subtitle = "lambda=10, p=0.005") +

 coord_cartesian(ylim=c(-1e3, 2.5e3)) +

 geom_vline(xintercept=t[apex_index],

col=pal$orange) +

 geom_line(aes(x=t, y=base_line), linetype="dashed",

color=pal$black)

print(p_baseline)

Figure 6.2 shows that the computed baseline looks
reasonable for this data. The weighting penalty p=0.005
forces the baseline to a reasonable level in the non-signal
range, and the lambda value of 10 makes the baseline very
smooth. In some situations, als might not give a reasonable
baseline for specific acquisition methods or compounds. If
different baseline characteristics are needed, the baseline
package includes several popular approaches that can be
specified with the method= parameter. See the baseline
package documentation for a current list. Several variations
of the asymmetric least squares approach are available from
different packages, such as airPLS [155] and arPLS [156]. The
penalized least squares method appears promising.

Implementing algorithms like airPLS or arPLS may require
translating code examples from the literature to R.

Figure 6.2 Asymmetric least squares baseline with

lambda = 10 and p = 0.005.

Having settled on als for now, I can correct the intensity
values of the trace by subtracting the base_line vector and
recomputing the amplitude of the peak. Further processing
of the trace should be done with this baseline corrected trace

shown in Figure 6.3.

Figure 6.3 Baseline corrected signal using ALS

algorithm.

y_base <- y - base_line

print(sprintf("Baseline at apex: %0.1f New maximum:

%0.1f",

 base_line[apex_index], y[apex_index]))

[1] "Baseline at apex: 382.5 New maximum: 214400.0"

p_base <- chrom_plot(t, y_points = y_base, y_line =

y_base,

 main_title = "Baseline Corrected Sample

11 Quantifier",

 sub_title = sprintf("Sampling rate:

%0.1f Hz",

sampling_frequency),

 points = TRUE)

print(p_base)

6.2.4 Computing Key Peak Features

The next feature to be evaluated is the peak width and
symmetry. The primary way of describing peak width is to
estimate its width at half (50%) of its maximum height. This
width is called FWHM or sometimes full width half height
(FWHH). It is also common to compare the distance from the
apex time to the front edge of the peak and the back edge of
the peak at different heights. A symmetric peak would give
the same value for both the front half and the back half-
width, however, real chromatography peaks are rarely
symmetric. Excessive asymmetry, however, can indicate
problems with the chromatography process. These values are
often tracked over time as part of a quality control process.

half_max <- max(y_base[apex_index])/2

To compute the width of the peak, the intercept between the
peak edges and the half_max value needs to be found. The
problem can be seen by looking closely at the intercepts
between the half-maximum value and the peak.

p_intercept <- p_base +

 coord_cartesian(xlim=c(7.2, 8.5), ylim=c(107200-

24000, 107200+26000)) +

 geom_vline(xintercept=t[apex_index],

col=pal$orange) +

 geom_hline(yintercept=half_max, col=pal$blue) +

 ggtitle(label = "Front and Back Intercepts for

FWHM")

print(p_intercept)

In Figure 6.4, the half-maximum line intercepts the peak
between two data points on both the front and back of the
peak. Using the data point above or below the intercept
would either under or overestimate the overall FWHM value
and distort the estimation of the asymmetry of the peak. The
retention times of the front and rear edges of the peak need
to be computed to estimate the peak width. The edge times
are computed from a linear interpolation between the two
closest raw data points, and the intercept time is returned.

Figure 6.4 Intercepts at the front and back edges of

the peak.

The interpolation between any two points and the intercept
calculation can be performed using the interp_time()
function.

interp_time <- function(x, y, y_in) {

 m <- (y[2] - y[1]) / (x[2] - x[1]) # slope (m)

formula

 b <- y[1]-(m*x[1]) # solve for

intercept (b)

 (y_in - b) / m # return x: x =

(y-b)/m

}

The front time value is computed by get_peak_front_time(),
which starts at the apex index and works backward toward
the front of the trace until the y value crosses the y_intercept
value. Any value in the range of y values in the data can be
used for y_intercept, which will be used to compute the
width at both 50% and 10%.

get_peak_front_time <- function(t, y, apex_index,

y_intercept) {

 front_t_range <- NULL

 front_y_range <- NULL

 for(i in apex_index:2) {

 if(y[i] < y_intercept) {

 front_t_range <- c(t[i], t[i+1])

 front_y_range <- c(y[i], y[i+1])

 break

 }

 }

 interp_time(front_t_range, front_y_range,

y_intercept)

}

The back intercept is found with get_peak_back_time(), which
starts at the apex and searches forward toward the end of
the trace until it crosses the y_intercept and then uses the
interp_time() function to find the time value for the intercept
just like the function for the front intercept.

get_peak_back_time <- function(t, y, apex_index,

y_intercept) {

 back_t_range <- NULL

 back_y_range <- NULL

 for(i in apex_index:length(y)) {

 if(y[i] < y_intercept) {

 back_t_range <- c(t[i], t[i-1])

 back_y_range <- c(y[i], y[i-1])

 break

 }

 }

 interp_time(back_t_range, back_y_range,

y_intercept)

}

These functions can now be used to find the widths at both
50% and 10%.

front_50 <- get_peak_front_time(t, y_base, apex_index,

half_max)

back_50 <- get_peak_back_time(t, y_base, apex_index,

half_max)

print(sprintf("Front width: %.2fs Back width: %.2fs

(diff: %.2fs)",

 t[apex_index]-front_50, back_50-

t[apex_index],

 abs((back_50-t[apex_index])-

(t[apex_index]-front_50))))

[1] "Front width: 0.40s Back width: 0.53s (diff:

0.13s)"

print(sprintf("FWHM: %.2fs", back_50-front_50))

[1] "FWHM: 0.94s"

The same calculation can be performed at the 10% height
value.

width_10 <- max(y[apex_index]) * 0.1

front_10 <- get_peak_front_time(t, y_base, apex_index,

width_10)

back_10 <- get_peak_back_time(t, y_base, apex_index,

width_10)

print(sprintf("Front width: %.2fs Back width: %.2fs

(diff: %.2fs)",

 t[apex_index]-front_10, back_10-

t[apex_index],

 abs((back_10-t[apex_index])-

(t[apex_index]-front_10))))

[1] "Front width: 0.78s Back width: 0.84s (diff:

0.06s)"

print(sprintf("FW10: %.2fs", back_10-front_10))

[1] "FW10: 1.61s"

These two calculations show that this particular peak is
asymmetric, with more width at the front of the peak than at
the back. This is commonly called fronting, whereas the
opposite asymmetry is usually called tailing. This is
interesting for this analysis because fronting is not
considered common in high-performance liquid
chromatography (HPLC) separations, while it is quite
common in gas chromatography (GC) separations.
The peak at the 10% height from the baseline is about double
the width at the 50% level, and this matches a common rule
of thumb in terms of baseline peak width. Several additional
characteristics of this peak that need to be computed include
the location of the start and end of the peak, its area, and

how reliable the chemical information can be derived from
the area calculation. The last question is often incorrectly
framed in terms of the signal-to-noise ratio. As I’ll show,
there are several ways to think about what constitutes a
signal and what constitutes noise, and it is easy to confound
the probability of signal detection with point estimates of
precision.

6.3 Fundamentals of Peak Detection

Ultimately, the peak can only be said to start when the
measured intensity is statistically significantly above values
obtained from the random fluctuations measured before the
deterministic component of the trace begins. Further, peaks
of all kinds have the characteristic width computed by the
FWHM shown above. Likewise, peaks end when the signal
falls back into the range expected to occur at random.
This is conceptually simple when dealing with a single source
of deterministic signal at a time. In other words, when
deterministic components of the trace (most generally
molecules) do not overlap. When sources of chemical
information overlap, it is still true that one deterministic
process ends when it stops generating signals above random
fluctuations, even if another source of chemical information
is the dominant generator of the measured signal. Despite
the selectivity of mass spectrometry, this kind of overlap is
common. Further, even if separated at the baseline level,
additional chemical signals constitute a second type of noise,
which must be handled separately from the noise attributed
to imperfections in the instrument. The chemical noise and
the related problem of overlapping peaks will be addressed
later in this chapter.
First, I’ll show how to detect a single peak that is isolated
from other peaks in a trace. There are many different ways to
perform peak detection. Conceptually, the use of derivatives

is the simplest, and the approach can be extremely effective.
In chromatography and mass spectrometry applications, a
second, more complex method based on continuous wavelet

transforms (CWT) is also very popular, especially within the
Bioconductor community.

6.3.1 Derivative-based Peak Detection

Using derivatives to perform peak detection uses the basic
relationships between the numerical first and second
derivatives of a peak. The relationship between the
derivatives for the peak in Figure 6.3 can be seen in Figure
6.5 using functions from the gsignal package.

Figure 6.5 First and second derivative overlay on a

real chromatographic peak.

I’ll use the Savitzky–Golay (SG) smoothing and differentiating
filters [157] described by Felinger [158] to get around the
difficulties in numerical differentiation in the presence of
noise. As Lanczos points out, taking the difference between
data points from a signal containing noise greatly amplifies
that noise, making the numerical differences useless [159].
In Section 6.3.2, I will discuss that the objective of smoothing
is to improve the accuracy of the observed signal, which, in
turn, allows useful numeric differentiation. There are two
parameters that must be selected when using SG filters: the
length of the filter (measured in the number of raw data
points) and the order of the polynomial that will be fit across
the length. In this chapter, I will follow the advice of Edwards

and Willson [160], which uses the number of data points
above the FWHM to choose a filter length.
The data point count approach was later taken up by Enke
[161], who showed optimum scaling factors of the data point
count above the FWHM for selecting the length for SG filters.
In Section 6.4, I will show that the FWHM data point count
and the sampling frequency relate to the frequency domain
content [162] of the deterministic component of the data.
This is useful when smoothing in the large using Fourier
analysis as described by Lanczos [163]. In Section 6.4.3, I’ll
show how to design optimum filters using frequency analysis.
First, I’ll define a function to compute the filter length from
the number of data points above the FWHM and use
Willson’s 0.7 factor to compute the filter width. Enke’s
weight is closer to 0.55, but the number should range
between 0.5 and 1.0. You can evaluate your data and select a
factor based on the expected peak shape.

get_sg_filter_length <- function(t, front_time,

back_time) {

 points_above_fwhm <- length(which(t > front_time &

t < back_time))

 if(points_above_fwhm < 7) {

 # The apex is a single data point: use the

smallest window possible

 filter_length <- 7

 } else {

 # smooth range 0.7 * data points above FWHM

 # Edwards, T.; Willson, P. Digital Least

Squares Smoothing of Spectra.

 # Appl Spectrosc 1974, 28 (6), 541–545.

 filter_length <- round(0.7 * points_above_fwhm)

 # if the filter length is even, then make it

one longer to make it odd

 if(filter_length %% 2 != 1) {

 filter_length <- filter_length + 1

 }

 }

 filter_length

}

For our example peak, the filter width is computed from the
raw data using get_sg_length():

sg_length <- get_sg_filter_length(t, front_50, back_50)

print(sg_length)

[1] 11

Now, the characteristics of the peak can be recomputed from
the smoothed data.

y_smooth <- sgolayfilt(y_base, n=sg_length, p=2)

apex_index_smooth <- get_peak_apex(t, y_smooth,

expected_rt, rt_tolerance)

half_max_smooth <- y_smooth[apex_index_smooth] / 2

front_smooth <- get_peak_front_time(t, y_smooth,

 apex_index_smooth,

half_max_smooth)

back_smooth <- get_peak_back_time(t, y_smooth,

 apex_index_smooth,

half_max_smooth)

The sgolayfilt() function can be used to compute the first
and second derivatives of the raw data. This function takes
the raw y-values, the filter length, and the polynomial order
(in this example, I use a quadratic polynomial p=2) and a
scaling factor (ts). The scaling factor is primarily used to
bring the derivatives into the scale of the raw data for
plotting, since the differences between raw data points can
be on a very different scale than the absolute value of the
data points themselves. As mentioned above, the increase in
noise in the numerical derivatives of LC-MS data warrants
using a longer filter to reduce the noise in the derivative
trace. Empirically, I have found that doubling the length of
the derivative filters improves the calculation of the
numerical derivatives. You can adjust this factor based on the
noise in your data, but as with all convolutional filters, ensure
that the filter length is odd.

derivitive_length <- round(sg_length * 2)

if(derivitive_length %% 2 != 1) {

 derivitive_length <- derivitive_length + 1

}

print(derivitive_length)

[1] 23

The smoothing filter length was computed to be 11, which
means the derivative length was estimated as the next odd
number that was double that length. The level of noise in
your data will help you determine how to define the length of
the derivative filters. Noise in real-world peaks is amplified
when the derivative is taken, so the scale of the random noise
will affect how well you can define the start and end of a
peak. Choosing a longer filter length for the derivatives can
compensate for noise without distorting the peak since these
values are only used to determine the beginning and end of
the peak. As described above, the ts parameter used in
sgolayfilt() is a scaling factor. The ts is used in the
denominator of the scaling calculation so a lower value of ts
gives a larger value for the derivative. The value of this
parameter is often either left at the default (ts=1) or
determined empirically.

y_d1 <- sgolayfilt(y_base, n=derivitive_length, p=2,

m=1, ts=0.25)

y_d2 <- sgolayfilt(y_base, n=derivitive_length, p=2,

m=2, ts=0.25)

Plotting the derivatives over the raw data shows how the
derivatives change at the start and end of the peak.

p_smooth <- chrom_plot(t, y_points = y_base, y_line =

y_smooth,

 main_title = "Smoothed Baseline

Corrected Sample 11 Quantifier",

 sub_title = sprintf("Sampling rate:

%0.1f Hz",

sampling_frequency),

 points = TRUE)

p_d1_d2 <- p_smooth +

 geom_line(aes(x=t, y=y_d1, color="First

Derivative")) +

 geom_line(aes(x=t, y=y_d2, color="Second

Derivative")) +

 geom_hline(yintercept=0.0, color=pal$black,

linewidth=0.5) +

 scale_color_manual(

 name='',

 breaks=c('First Derivative', 'Second

Derivative'),

 values=c(pal$darkorange, pal$blue)) +

 theme(legend.position = "bottom")

print(p_d1_d2)

The basic idea is that at the apex of the peak, the first
derivative will be zero by definition. It is easy to see in Figure
6.5 that the zero crossing of the first derivative lines up with
the peak maximum time, remembering that the absolute
maximum intensity of unsmoothed data might be a noise
spike. In Figure 6.5, the first derivative crosses zero at the
retention time of the apex of the peak, as expected. The first
derivative is positive on the front half of the peak and
negative on the back half. The second derivative increases
and is positive during the initial rise of the peak and then
goes negative during the apex region of the peak. The second
derivative crosses zero roughly at the time of the front and

back of the peak at the FWHM. After the apex region of the
peak, the second derivative again turns positive.
The basic rule for detecting a real peak, rather than noise,
can be created from the derivatives. The peak starts when
both the first and second derivatives are positive and ends
when the first derivative crosses from negative to positive
when the second derivative is positive.
However, looking closely at the baseline area, it becomes
clear that a simple positive/negative rule won’t work in the
presence of noise.

p_zoom <- p_d1_d2 +

 coord_cartesian(xlim=c(6, 12),

 ylim=c(-1e3, 2.5e3)) +

 geom_vline(xintercept=front_smooth, col=pal$black,

linetype="dashed") +

 geom_vline(xintercept=back_smooth, col=pal$black,

linetype="dashed") +

 ggtitle(label="First and Second Derivatives")

print(p_zoom)

In Figure 6.6, you can see that both the first and second
derivatives vary around zero until very close to the first data
points, which could reasonably be called the start of the
peak. The situation at the back of the peak is different. As is
typical of chromatography peaks, higher-order processes
become evident, and the noise is higher in the tail of the peak
than in the front. The first and second derivatives bounce
between positive and negative in a way similar to the front of
the peak. Defining the beginning and end of a peak is
significantly affected by the noise. Hard boundaries like
“positive” or “negative” ignore the noise, allowing random
variability to define important aspects of the peak definition.

Figure 6.6 First and second derivative variations

around zero. The first derivative becomes positive

first, followed by the second derivative at the front of

the peak. Note that the second derivative zero

crossings are close to the FWHM positions (dashed

lines).

It is better to define the beginning and end of a peak in terms
of expected variation in the data. In this specific trace, it is
relatively easy to estimate the expected variation of the
random component of the data before the first peak. Still,
because of chemical noise, a more robust method for
estimating noise and, thus, the threshold for the derivatives
is needed.

6.3.2 Data Smoothing and Noise Calculation

For many years, there has been disagreement on the
objective of smoothing. Early in applying computer analysis
to mass spectrometry data, smoothing has been viewed as
having “cosmetic value only,” or to “make information more
easily accessible to human interpretation.” [161]. This
interpretation was challenged at least as early as 1886 by
Sprague, addressing the subject of smoothing actuarial data
[164]. Whittaker summarized Sprague’s position as: “[If you
asked someone] what was the real object of graduation? [an
older term for smoothing] Probably the reply would be, To
get a smooth curve; but he did not think that quite correct.
To his mind, the reply should be to get the most probable
deaths” [154]. Likewise, in analytical chemistry, smoothing is
not cosmetic. It is statistical. The goal is to replace values
obtained from an imperfect instrument with values more
likely to have come from the underlying chemical process,
which is known to be smooth when many molecules are
involved. You may not understand the underlying process
completely and probably don’t know the statistical
distribution of the random or deterministic processes.
However, you do know that the deterministic component in
chromatography involves a large number of molecules, so it
must be smooth.
To perform an estimate of the dispersion of the random
component of the noise, it is necessary to determine what
type of random noise is generated by mass spectrometry. If
the random noise comes from the same distribution with
constant dispersion over the time of the measurement, it’s
called homoskedastic. If the distribution or the dispersion of
noise varies over time, then it is called heteroskedastic. To
risk stating the obvious, it is much easier to estimate the
properties of noise when the distribution and dispersion are
fixed over the course of a measurement.

To evaluate the noise, I will use the smooth data to
approximate the underlying chemical process and estimate
the random noise in the signal. Performing this evaluation in
R is straightforward. The smooth trace is computed based on
the filter length established for the peak of interest as
described above and then subtracted from the raw trace to
obtain a deviation vector. If the smoothed data is treated as
an approximation of the true underlying deterministic signal,
then the deviation vector represents an approximation of the
random noise in the data.

deviation <- y - y_smooth

Plotting this data will show if the deviation vector can be
used directly for noise calculations.

p_deviation <- ggplot() +

 scale_y_continuous(labels = inten_label) +

 geom_point(aes(x=t, y=deviation), shape=1) +

 geom_vline(xintercept=2, col=pal$darkorange) +

 geom_vline(xintercept=6, col=pal$darkorange) +

 xlab("Retention Time (sec)") +

 ylab("Deviation from Smooth (counts/sec)") +

 ggtitle(label= "Deviation From Smooth",

 subtitle = "SG Quadradic, Length 9") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

)

print(p_deviation)

From Figure 6.7, it is clear that the noise in this data varies
with the intensity of the signal. Peaks have more dispersion
at the top than they do near the baseline. The plot also
suggests that the signal contains only random signals from
retention time 2 seconds until about 6 seconds. The simplest
description for random noise is the normal distribution. Since
the electronic and other types of noise involve large numbers
of events, this assumption is usually good. If it holds, then
much of the statistical calculations become straightforward.
However, just like with the assumption of constant
dispersion, the data should be tested for normality before
using statistical functions that assume a normal distribution.

Figure 6.7 Deviations of the raw data from the

smoothed trace using the SG quadratic filter with

length 9. The heteroskedastic nature of the noise in

mass spectrometry is clear from the larger deviations

as the amplitude of the peak increases. The

guidelines represent the minimum and maximum

time range for the peak.

The test that the noise data is normally distributed can be
done visually with the Q-Q plot and quantitatively with the
Shapiro–Wilk test using the shapiro.test() function from the
stats package. I’ll start with the Q-Q plot, commonly used
with linear regression as a diagnostic for the assumptions of
the least squares method of performing a regression.

Select from the start of the acquisition to the end

of the chemical-free

portion of the signal (6 seconds in this example)

blank_region <- data.frame(t = t[(t < 6)], y = y[(t <

6)])

This gives a data.frame containing only the chemical-free
region.

p_qq <- blank_region |>

 ggplot(aes(sample = y)) +

 stat_qq() +

 stat_qq_line() +

 xlab("Theoretical Quantiles") +

 ylab("Sample Quantiles") +

 ggtitle(label= "Normal Q-Q Plot",

 subtitle = "Raw Intensity 2-6s") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

)

print(p_qq)

Figure 6.8 shows some extraordinary aspects of this data.
First, the data appears to be left-censored at zero. This
means all values below some count rate are given as zero.
Censored data cannot be treated in the same way as
uncensored data. An observation was made, but it was just
below the limit of the detector to measure. Any estimate of
location (mean) or dispersion (standard deviation) will be
incorrect because the data do not represent the actual

distribution but the part above the detection limit. Second,
this instrument (a Sciex 5500 Triple Quadrupole Mass
Spectrometer) quantized the data.

Figure 6.8 Q-Q plot of the noise component of raw

intensity data. The data are not normal and show

signs of censoring at zero.

All the data in the blank region reported as 0 in the Q-Q plot
are likely to be non-detects. However, the remaining data
from the upper quantiles can be used to estimate the
distribution. Non-detects are a common occurrence when
making measurements near a limit of detection. Certainly,
the baseline noise falls into this category. Figure 6.8 visually
indicates that the data are not normally distributed, so any
summary statistic assuming an underlying normal

distribution will give incorrect results. The Shapiro–Wilk
[165, 166] is a test of normality that can provide a
quantitative measure of normality [167], which is one of the
best tests, especially for relatively small datasets. The
shapiro.test() function provided by the stats package
implemented based on the Royston 1995 paper [168].

shapiro.test(blank_region$y)

##

Shapiro-Wilk normality test

##

data: blank_region$y

W = 0.89362, p-value = 3.602e-05

The Shapiro–Wilk test computes a statistic related to
correlation, W, which is interpreted using the p-value. The null
hypothesis is that the blank_region data comes from a
normally distributed random noise process. A p-value below
0.05 means you can reject the null hypothesis and say that
the data is not normally distributed. If the data were
normally distributed, the familiar formulas for mean and
standard deviation (which are the maximum likelihood
estimates [MLE]) shown in Eqs. (6.1) and (6.2) can be found
in almost any basic statistics textbook and can be used to
estimate the location (center of the distribution) and the
dispersion (standard deviation) of the noise.

(6.1)

(6.2)

However, these formulas implicitly assume that the mean is
the highest probability expected value from the data and that
the standard deviation is derived from the in the equation
for the Normal distribution. If I use these formulas on the
raw data in Figure 6.8, I will get an incorrect value for the
standard deviation. I know that the data is not normally
distributed, but from the plot, it appears to be left-censored

and that no value below zero is reported. Further, the
number of zero values present is too high for a normally
distributed noise region. This guess might be wrong, and the
noise might follow another distribution or be censored.
However, if I can get an estimate of the standard deviation
under the assumption that the data come from a left-
censored normal distribution, I can use that to estimate noise
from these measurements.

Interlude: Complete (Non-Censored) Normally

Distributed Noise

Data will not always be censored. Before showing how to
determine dispersion in the case of censored data, I want to
show an example of non-censored or complete data. Briefly,
non-censored data is shown in Figure 6.9a. The chemical-free
portion is shown in Figure 6.9b, and the Q-Q plot of the blank
portion of the data is shown in Figure 6.9c. It would appear
from the Q-Q plot that the noise region is normally
distributed, and the Shipiro–Wilk test confirms this intuition.

Figure 6.9 Chromatogram with normally distributed

noise.

##

Shapiro-Wilk normality test

##

data: blank_region_complete$y

W = 0.98955, p-value = 0.4823

Unlike the data in Figure 6.8, the p-value for the Shapiro-
Wilk W statistic for the data in Figure 6.9 is far above 0.05,
so the null hypothesis (that the data comes from a normal
distribution) is not rejected, leaving the conclusion that
functions like mean() and sd() will work properly on this data:

Mean of complete data: 5877.9

SD of complete data : 737.8

In this example data, I can use sd() to determine when the
raw signal exceeds a 99% threshold roughly estimated by 2.5
standard deviations from the mean. My goal is to use the
measure of dispersion to set limits based on the raw data
dispersion to set thresholds for the derivatives shown in
Figure 6.6 in order to determine when the peak begins and
ends.

Back to Censored Data

For the data in Figure 6.8, I will use the EnvStats package
[169], which includes functions to work with censored data.
It’s useful to know how to do this because not only can raw
data be censored by the instrument, but an assay for a
specific compound can also be censored by the limits of
quantitation (lower and upper). First, I’ll try the standard
methods on the raw data from the blank region.

blank_y_mean <- mean(blank_region$y)

blank_y_sd <- sd(blank_region$y)

cat(sprintf("Mean of y before peak : %6.1f",

blank_y_mean), "\n",

 sprintf("SD of y before peak : %6.1f",

blank_y_sd), sep="")

Mean of y before peak : 533.3

SD of y before peak : 480.2

The Q-Q plot for the censored data supports the idea that the
random data come from a censored normal population. To
use this and the related EnvStats approach, you have to
create a logical vector that contains a 0 (FALSE) for each
missing value.

censored <- blank_region$y==0

Now, the qqPlotCensored() function can be used to visualize
the Q-Q plot for the censored data.

qqPlotCensored(blank_region$y, censored = censored,

add.line = TRUE,

 main= "Q-Q Plot for Censored Noise

Region",

 ylab= "Quantiles of Noise Region")

The plotting positions of data points in Figure 6.10 produced
by EnvStats are slightly different from the qqnorm() function
from the base R stats package. The default positions for
qqPlotCensored() come from Michael and Schucany [170].
The exact details are not critical but useful when comparing
results from the two packages.

Figure 6.10 Q-Q plot for censored noise region.

The enormCensored() function is used to estimate the location
(mean) and dispersion (sd) of censored normal data.
First, you label the censored data elements so they can be
used to determine how much of the data is missing and
where it is in the distribution. Then, choose a method for
estimating the underlying normal distribution. The method
I’ve chosen is called rROS, which stands for Robust
Regression on Order Statistics [171–175]. The basic idea of
rROS is to impute the missing values by performing a linear
regression on non-censored data in the Q-Q plot. The slope of
the regression line in the Q-Q plot is the standard deviation
of the normal distribution, and the y-intercept is the
estimated mean. Those values are then used to estimate the
intensity values of the missing data. Once the missing data

has a value, then the MLE method can be applied to the
complete dataset, now with imputed values for the censored
observations. In the enormCensored() function, the parameter
method is used to select rROS as the approach. The rROS
algorithm has several advantages for mass spectrometry and
chromatography data because it performs very well on small
datasets. In the example above, there are only 66 data points,
and they are quantized into only eight specific levels. So,
with a limited number of unique values to determine slope
and intercept, rROS is a good choice. Further, it has been
recommended by the USEPA [176] for more than a decade.
Robust methods that work with small sample sizes and stand
the test of time are few and far between!

enc <- enormCensored(blank_region$y, censored =

censored, method = "rROS")

print(enc)

##

Results of Distribution Parameter Estimation

Based on Type I Censored Data

--

##

Assumed Distribution: Normal

##

Censoring Side: left

##

Censoring Level(s): 0

##

Estimated Parameter(s): mean = 469.7344

sd = 573.3882

##

Estimation Method: Imputation with

Q-Q Regression (rROS)

##

Data: blank_region$y

##

Censoring Variable: censored

##

Sample Size: 66

##

Percent Censored: 24.24242%

Looking at the rROS estimates for standard deviation
compared to the MLE value, it’s clear that treating the
censored values as measured values at zero artificially
lowered the estimated standard deviation and, thus, the
apparent noise of the instrument. The actual noise (when it
rises above the censored level) has a standard deviation
~19% larger, meaning that for a signal to be distinguished
from noise, its intensity has to exceed a larger value than
suggested by simply measuring the noise from the highest
value to the lowest value.
Since approximately 25% of the data are missing, it is worth
looking into imputing the missing values from the estimated
normal distribution parameters found with enormCensored().
If there is too much missing data to be ignored, values can be
imputed using various methods. Imputing values from either
an observed or known distribution or from some other
characteristic of the data can be useful. In this case, I will
start by ignoring the fact that the data are censored and use
the raw data as it is since it will be smoothed during the
calculation of the first and second derivatives, or impute the
0 values to values drawn from the missing portion of the
estimated distribution.
Next, I’ll show how to impute the censored values shown in
Figure 6.8 using the feature of the Q-Q plot that the slope
represents the standard deviation, and the y-intercept
represents the mean of the distribution.

cen_norm_mean <- enc$parameters[["mean"]]

cen_norm_sd <- enc$parameters[["sd"]]

For the censored data, I can replace the 0 (missing values) by
simply using where the is simply the

theoretical quantile (x value) seen in Figure 6.8. The x values
can be computed using the qqnorm() function.

qq_blank <- qqnorm(blank_region$y)

Now, I’ll make a new version of the blank_region, replacing
the censored data with values selected at random from the
missing theoretical quantiles.

create a new y vector to hold the imputed values

imputed_y <- blank_region$y

The censored index values of the blank are:

which(censored)

[1] 1 2 6 11 12 22 23 26 32 33 40 41 42 45 46 50

Since these are ordered, the x values are also ordered from
lowest to highest.

qq_blank$x[which(censored)]

[1] -2.4287371 -2.0004236 -1.7758504 -1.6161559

-1.4894700 -1.3829941

[7] -1.2902332 -1.2074141 -1.1321396 -1.0627865

-0.9982012 -0.9375322

[13] -0.8801319 -0.8254945 -0.7732170 -0.7229722

Since censoring occurs randomly through the blank region, I
will replace the imputed values randomly in the 0 positions in
the data. The sample() function randomizes the vector of
index values.

randomized_censored <- sample(which(censored))

Now, using a simple loop, I’ll go through the 17 censored
values and replace them with a randomly selected quantile
value, which is converted into a y value using the slope and
intercept of the Q-Q regression line found by the rROS
method.

for(i in 1:length(which(censored))) {

 imputed_y[randomized_censored[i]] <-

 qq_blank$x[which(censored)[i]] * cen_norm_sd +

cen_norm_mean

}

To finish, I replace the raw y vector with the imputed y
vector.

blank_region_imputed <- blank_region

blank_region_imputed$y <- imputed_y

p_imputed <- blank_region_imputed |>

 ggplot(aes(sample = y)) +

 stat_qq() +

 scale_y_continuous(labels = inten_label, n.breaks =

6) +

 geom_abline(aes(slope=cen_norm_sd, intercept =

cen_norm_mean,

 color= "Imputed"), key_glyph =

draw_key_path) +

 geom_abline(aes(slope=sd(blank_region$y), intercept

= mean(blank_region$y),

 color= "Raw"), key_glyph =

draw_key_path) +

 scale_color_manual(name='Q-Q Line: ',

 breaks=c('Imputed', 'Raw'),

 values=c(pal$darkorange,

pal$black)) +

 xlab("Theoretical Quantiles") +

 ylab("Sample Quantiles") +

 ggtitle(label = "Imputed Q-Q Plot for Censored

Normal Distribution",

 subtitle= sprintf("Raw Intensity

%0.1fs-%0.1fs",

 blank_region_imputed$t[1],

max(blank_region_imputed$t))) +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

) +

 theme(

 legend.position.inside = c(.1, .95),

 legend.justification = c("left", "top"),

 legend.box.just = "right",

 legend.margin = margin(6, 6, 6, 6)

)

print(p_imputed)

Figure 6.11 shows the effects of imputing the missing values
using the estimated mean (y-intercept) and standard
deviation (slope) computed using rROS assuming the zero
values in the data are censored data. Compare the imputed
mean and standard deviation values obtained using rROS to
the values obtained by assuming the zero values in the data
are real. It’s clear that treating the zero values as real lowers
the estimated standard deviation, artificially lowering the
estimated dispersion which artificially lowers the estimated
noise content of the data.

Figure 6.11 Q-Q plot showing the imputed values and

the lines for the normal distributions with imputation

and without (raw).

Using the derivative of the trace to detect the beginning and
end of a peak relies on smoothing, so now I can check the
effects of the imputation on the smoothed data to determine
how the threshold value for the first and second derivatives
should be calculated.

y_blank_raw_smooth <- sgolayfilt(blank_region$y,

n=sg_length, p=2)

y_blank_imp_smooth <-

sgolayfilt(blank_region_imputed$y, n=sg_length, p=2)

These raw and imputed traces are smoothed with the filter
length computed from the peak in Figure 6.5 using
get_sg_filter_length() from Section 6.3.1. Now I’ll compare
the smoothed raw and imputed data.

p_smooth_blank <- ggplot() +

 coord_cartesian(ylim=c(-1e3, 1.5e3)) +

 scale_y_continuous(labels = inten_label) +

 geom_point(aes(x=blank_region_imputed$t,

 y=blank_region_imputed$y, color=

"Imputed")) +

 geom_point(aes(x=blank_region$t,

 y=blank_region$y, color= "Raw")) +

 geom_line(aes(x=blank_region_imputed$t,

 y=y_blank_imp_smooth, color=

"Imputed")) +

 geom_line(aes(x=blank_region$t,

 y=y_blank_raw_smooth, color= "Raw"))

+

 xlab("Retention Time (sec)") +

 ylab("Intensity (counts/sec)") +

 ggtitle(label= "Smoothed Traces Prior to Peak",

 subtitle = sprintf("SG Order 2, Length %d,

RT: 2-6s", sg_length)) +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

) +

 scale_color_manual(

 name='',

 breaks=c('Raw', 'Imputed'),

 values=c(pal$blue, pal$red)) +

 theme(legend.position = "bottom")

print(p_smooth_blank)

Even with imputation, the two smoothed traces in Figure
6.12 are not that different. This is one of the strengths of

smoothing. I know that the imputed data are normally
distributed. What about the smoothed versions of both?

Figure 6.12 Blank region smoothed with the SG order

two filters. Smoothing the imputed values is not

significantly different from smoothing the raw values.

cat(sprintf("Mean of Raw : %0.1f",

mean(y_blank_raw_smooth)),"\n",

 sprintf("Mean of Imputed: %0.1f",

mean(y_blank_imp_smooth)), sep="")

Mean of Raw : 534.7

Mean of Imputed: 469.2

cat(sprintf("SD of Raw : %0.1f",

sd(y_blank_raw_smooth)),"\n",

 sprintf("SD of Imputed: %0.1f",

sd(y_blank_imp_smooth)), sep="")

SD of Raw : 225.4

SD of Imputed: 303.8

shapiro.test(y_blank_raw_smooth)

##

Shapiro-Wilk normality test

##

data: y_blank_raw_smooth

W = 0.94818, p-value = 0.007958

shapiro.test(y_blank_imp_smooth)

##

Shapiro-Wilk normality test

##

data: y_blank_imp_smooth

W = 0.98037, p-value = 0.3797

While the imputed smoothed data easily exceeds the
threshold for normality, smoothing the raw data also passes
the minimum threshold for using MLE estimates. This means
that the function sd() can be used on the smoothed first and
second derivatives to establish a threshold.
If the smooth data were not at least minimally normal, then
the data should be imputed using a procedure like what has
been shown above, and then sd() can be used to determine
when the first and second derivatives have reached a
conservative value close to zero where the probability of
fluctuations being random is high. This is the key to the peak

detection problem. The level where you can say a peak is
present or not is the limit of detection. When using peak area
to quantify a compound, you become interested in the
detection limit for the beginning and end of a peak. The limit

of quantification is an entirely different concept, tied to the
ability to reproduce a signal height or area from a specific
quantity of material responsible for the deterministic
component of the trace.
For the example being used in the chapter, several
simplifications were made. First, there is no chemical noise
from the beginning of the acquisition time until very close to
the peak of interest. Second, despite being censored, the
smoothed data in this blank region is close enough to be
normally distributed to use the simple sd() functions, which
assume normally distributed noise. Third, there is no
interfering peak following too close to the peak of interest, so
the area can be calculated from the peak front edge to the
back edge after correcting for the baseline computed in
Section 6.2.3.

6.3.3 Using Derivatives to Find the Start and End

of a Peak

To find the peak start and end, I will compute the dispersion
of the derivatives shown in Figure 6.6. I need to know when
the first and second derivatives have exceeded a value that
can reliably be called noise in each derivative trace. Even
though I’ve already shown that using the sd() function
underestimates the dispersion for this data, it can still work
as a threshold for the derivatives computed using the
sgolayfilt() function. If this does not hold up for your data,
you must use one of the more sophisticated dispersion
estimates, like the one discussed for censored data above.

d1_threshold <- sd(sgolayfilt(blank_region$y,

n=derivitive_length,

 p=2, m=1, ts=0.25))

d2_threshold <- sd(sgolayfilt(blank_region$y,

n=derivitive_length,

 p=2, m=2, ts=0.25))

range_start <- expected_rt - rt_tolerance

range_end <- expected_rt + rt_tolerance

I’ll create a function called get_rising_points() to compute a
list of data points that fit the criteria of a rising edge of a
peak and return them as a vector of trace index values.

get_rising_points <- function(y_d1, y_d2, d1_threshold,

d2_threshold) {

 which((y_d2 > d2_threshold) & (y_d1 >

d1_threshold))

}

The index values of the rising edge elements show a pattern
for real peaks: there are consecutive rising elements in the
array leading up to the FWHM level:

rise <- get_rising_points(y_d1, y_d2, d1_threshold,

d2_threshold)

print(rise)

[1] 47 48 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86

[20] 87 88 89 90 91 142 143 144 145 146 147 148

149 150 151

Notice that array elements 70-91 are consecutive.
Consecutive rising elements can be used as a heuristic for
the presence of the rising edge of a peak. One variation on
this heuristic would be that a real peak has to contain at least
as many rising data points as the computed filter width to be

a member of the peak with a width that produced the filter in
the first place. Narrow peaks with fewer data points above
FWHM will have fewer data points in the rising edge than
wide peaks.
To implement the heuristic, I’ll define a function called
get_peak_start() that checks the rise array for consecutive
indexes representing continuous segments of rising data
points. The min_segment_length parameter is the minimum
length of this segment needed for the peak to be considered
present. The minimum segment length could be set to any
length depending on the situation, but a reasonable minimum
would be 3 since that is the minimum possible FIR filter
width. The peak starts at the first element of a segment at
least as long as the minimum_segment_length.

get_peak_start <- function(t, rise, range_start,

range_end,

 apex_index,

min_segment_length=3) {

 if(length(rise) < min_segment_length) {

 return(NA)

 }

 run_length <- 1

 start_index <- 1

 range_index_list <- which(t > range_start & t <

range_end)

 for(i in 1:(length(rise)-1)) {

 if(rise[i] < range_index_list[1]) {

 start_index <- i + 1

 next

 }

 if(rise[i] >

range_index_list[length(range_index_list)]) {

 break

 }

 if(rise[i+1] == rise[i] + 1) {

 run_length <- run_length + 1

 } else {

 run_length <- 1

 start_index <- i + 1

 }

 if(run_length >= min_segment_length) {

 break

 }

 }

 peak_start_index <- rise[start_index] - 1

 if(peak_start_index < apex_index) {

 peak_start_index

 } else {

 NA

 }

}

Now I call get_peak_start() to find the index of the start of
the peak (which starts at the last baseline point):

peak_start_index <- get_peak_start(t, rise,

range_start, range_end,

 apex_index_smooth,

min_segment_length = 3)

sprintf("Peak start index %d: Start time %0.2fs",

 peak_start_index, t[peak_start_index])

[1] "Peak start index 69: Start time 6.13s"

To find the end of the peak, I use the same procedure as the
start of the peak. I created a function that gets the array
indices that represent the falling edge of a peak called
get_falling_points()

get_falling_points <- function(y_d1, y_d2,

d1_threshold, d2_threshold) {

 which((y_d2 > d2_threshold) & (y_d1 < -

d1_threshold))

}

Get the falling edge points using the same threshold:

fall <- get_falling_points(y_d1, y_d2, d1_threshold,

d2_threshold)

print(fall)

[1] 108 109 110 111 112 113 114 115 116 117 118 119

120 121 122 123 124 125 126

[20] 127 128 129 131 132 134 135 136 137 138 139 140

169 170 171 172 173 174 175

[39] 176 179 180 191 199 200 201 202

In the function get_peak_end() below, instead of the first
element of the contiguous segment, the end of the peak is the
last element of a segment, at least as long as the
minimum_segment_length. The peak end is one past the last
falling data point to bring the end of the peak back to the
baseline:

get_peak_end <- function(t, fall, range_start,

range_end,

 apex_index,

min_segment_length=3) {

 if(length(fall) < min_segment_length) {

 return(NA)

 }

 run_length <- 1

 end_index <- 1

 range_index_list <- which(t > range_start & t <

range_end)

 for(i in 1:(length(fall)-1)) {

 if(fall[i] < range_index_list[1]) {

 next

 }

 if(fall[i] >

range_index_list[length(range_index_list)]) {

 break

 }

 if(fall[i+1] == fall[i] + 1) {

 run_length <- run_length + 1

 end_index <- i + 1

 } else {

 if(run_length >= min_segment_length) {

 break

 } else {

 run_length <- 1

 }

 }

 }

 peak_end_index <- fall[end_index] + 1

 if(peak_end_index > apex_index) {

 peak_end_index

 } else {

 NA

 }

}

Like with the peak start index, the peak end index is found
calling the function get_peak_end():

peak_end_index <- get_peak_end(t, fall, range_start,

range_end,

 apex_index_smooth,

min_segment_length = sg_length)

sprintf("Peak end index %d: End time %0.2fs",

 peak_end_index, t[peak_end_index])

[1] "Peak end index 130: End time 9.80s"

Plotting the peak features shows how well the threshold and
segment length parameters worked for this data:

p_picked <- chrom_plot(t, y_points = y, y_line =

y_smooth,

 main_title = "Sample 11 Quantifier",

 sub_title = sprintf("Start: %0.1fs -

End %0.1fs",

t[peak_start_index], t[peak_end_index]),

 points = TRUE)

p_picked <- p_picked +

 coord_cartesian(xlim=c(6,11), ylim=c(-2.5e2, 4e2))

+

 geom_line(aes(x=t, y=y_d1), color=pal$darkorange) +

 geom_point(aes(x=t, y=y_d1), color=pal$darkorange,

shape=16) +

 geom_line(aes(x=t, y=y_d2), color=pal$blue) +

 geom_point(aes(x=t, y=y_d2), color=pal$blue,

shape=16) +

 geom_hline(yintercept=0.0, color=pal$black) +

 geom_hline(yintercept = d2_threshold,

color=pal$blue,

 linetype= "dashed") +

 geom_hline(yintercept = -d2_threshold,

color=pal$blue,

 linetype= "dashed") +

 geom_hline(yintercept = d1_threshold,

color=pal$darkorange,

 linetype= "dashed") +

 geom_hline(yintercept = -d1_threshold,

color=pal$darkorange,

 linetype= "dashed") +

 geom_vline(xintercept=t[peak_start_index],

 linetype="dashed", color=pal$green,

linewidth=0.75) +

 geom_vline(xintercept = t[peak_end_index],

 linetype="dashed", color=pal$green,

linewidth=0.75)

print(p_picked)

Figure 6.13 shows the start and end time (vertical dashed
lines) of the peak, as well as the estimates (positive and
negative) of the noise levels from the scaled first and second
derivative, smoothed, imputed non-signal region of the trace.
From this type of plot, you can diagnose any issues with peak
picking and the calculated start and end of a peak.

Figure 6.13 Start and end times picked using the

derivative method.

6.3.4 Wavelet-based Peak Detection

The derivative method for picking peaks uses a convolutional
(running average) digital filter selected to match the
expected width of the peak to be characterized. The SG

filters for the first and second derivatives were used to find
the start and end of the peak. The SG filters fit a polynomial
locally to a set of data points, shift one data point down the
array, and perform another polynomial fit. In the example
above, a parabola shape was used for the fit. Another highly
related method uses the continuous wavelet transform (CWT)
to approximate the deterministic component of the trace
using a different shape function.
The shape used most commonly in mass spectrometry is
nicknamed the Mexican Hat [104, 177, 178], otherwise
known as the Maar Wavelet [179]. The Mexican Hat gets its
name from its resemblance to the cross-section of a
sombrero. The equation is the negative (flipped on the x-axis)
of the second derivative of a Gaussian. The function has a
scale parameter that determines the width and is related to
the of the original Gaussian. This is identical to the SG
second derivative concept, in which smoothing is combined
with taking the second derivative. Taking the negative of the
second derivative is for convenience so that the maxima of
the filter output represents the apex of a peak.
Wavelet analysis of both mass spectra and chromatograms
can be performed using the Bioconductor package
MassSpecWavelet. The cwt() function calculates the
coefficients of the wavelet selected. The default is the mexh()
function, but custom functions can also be used. The mexh()
function specifies the mother wavelet. This basic shape will
be scaled for each scale level (expected peak width)
specified. The Mexican Hat used by the MassSpecWavelet
package is defined from -8 to 8 according to the
documentation for the function. When a scale is selected, the
function is sampled on intervals of 1/scale.

p_mexh <- data.frame(x=seq(-8,8, by=1/64),

 y=mexh(seq(-8,8, by=1/64))) |>

 ggplot(aes(x=x, y=y)) +

 scale_x_continuous(breaks = seq(-8,8, by=2)) +

 scale_y_continuous(limits = c(-0.5, 1.0),

 breaks = seq(-0.75,1.25,

by=0.25)) +

 geom_line() +

 xlab("Index") +

 ylab("Normalized Amplitude") +

 ggtitle(label= "Mexican Hat (Maar) Wavelet",

 subtitle = "Scales from 1 to 64") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

)

print(p_mexh)

When applied to the quantitation trace from sample 11 used
in the example of derivative-based peak detection, the cwt()
function will produce a matrix of wavelet coefficients. The
columns are the scale values, which, while recommended to
be between 1 and 64, can be generated at a finer resolution. I
will use 0.1 increments for the scale values. The scale values
are similar to the filter length selection in Section 6.3.1.
Specifically, the scale value I expect to see a maximum value
for is where the width of the peak (in data points above
FWHM) is approximately equal to the scale. The suggested
range for Gaussian peaks is a scale range from [180].
The MassSpecWavelet package has some basic plotting
functions, like most Bioconductor packages; however, I will

show how to plot the wavelet coefficients using ggplot2.
Getting the coefficients is straightforward. You provide the y
values of the trace and specify the scale vector. Here, I will
use scales from 1 to 24 since my peak has 15 data points
above the FWHM (approximately) and step by 0.1. The
mexh() function name is supplied as the wavelet.

scales <- seq(1, 24, 0.1)

wCoefs <- cwt(y, scales = scales, wavelet = "mexh")

I’ll use the same approach shown in Section 4.3.3.2 to create
an image from the matrix. I’ll add the retention time for the
x-axis and then use pivot_longer() so I can use geom_raster()
to make an image.

w_t <- as_tibble(wCoefs) |>

 mutate(rt=t, .before=as.character(scales[1]))

w_t_long <- w_t |>

 pivot_longer(cols=!"rt", names_to="scale",

values_to = "intensity") |>

 mutate(scale=as.numeric(scale))

Since the shape shown in Figure 6.14 will generate large
negative values unrelated to the peak location, I’ll zero these
values to get the data into a dynamic range that can be
visualized.

Figure 6.14 The Mexican Hat mother wavelet used in

“MassSpecWavelet,” which can be used with scale

values from 1 to 64.

w_t_long$intensity[w_t_long$intensity<0] <- 0

I’m using the geom_raster() layer to plot the intensity as a
color (fill) at every x and y point on the plot. If the rt
variable is not uniformly spaced, this will cause a shift in the
plot for that x value. If geom_tile() is used with a nonuniform
axis (x or y), the spacing will be maintained, but vertical lines
will run through the plot where the spacing is uneven. If this
shift is a problem for your analysis, binning the axis to create
uniform spacing will solve the visualization shift problem.

p_cwt <- w_t_long |>

 ggplot(aes(x = rt, y = scale, fill = intensity)) +

 geom_raster() +

 scale_fill_viridis_c(limits=c(0, 3e4),

 na.value = "white", option =

"plasma") +

 coord_cartesian(xlim=c(2,18), ylim=c(1,24), expand

= FALSE) +

 scale_x_continuous(breaks = seq(2,18,1)) +

 scale_y_continuous(breaks = seq(2,24,2)) +

 xlab("Retention Time (sec)") +

 ylab("CWT Coefficient Scale") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label = "CWT Coefficients Sample 11 Quant

Trace",

 subtitle = "Mexican Hat Wavelet Scales 1-

24")

print(p_cwt)

In Figure 6.15, the main peak gives a significant intensity at
almost every scale, and the smaller peak at the later
retention time appears over a smaller scale range and,
ultimately, a narrower width than the main peak. It’s easy to
see that the scale matches what was found in Section 6.3.1
for the data point count above the FWHM by zooming in on
the peak apex.

Figure 6.15 CWT coefficients for the wavelet

transformation at multiple sales for the quantifier

trace from sample 11.

points_above_fwhm <- length(which(t > front_50 & t <

back_50))

sprintf("Points above FWHM: %d", points_above_fwhm)

[1] "Points above FWHM: 15"

Zooming in on the retention time of the main peak, and
marking the scale at which the peak was detected shows the
relationship between the derivative method using FWHM and
the wavelet scale method for locating the peak apex (Figure
6.16):

p_cwt_peak <- p_cwt +

 scale_fill_viridis_c(limits=c(0, 5.9e5),

 na.value = "white", option =

"plasma") +

 coord_cartesian(xlim=c(6,10), ylim=c(1,24), expand

= FALSE) +

 geom_segment(aes(x=6, y=points_above_fwhm,

 yend = points_above_fwhm, xend =

10),

 linewidth = 0.25, linetype="dotted",

color="white") +

 scale_x_continuous(breaks = seq(6,10,1)) +

 scale_y_continuous(breaks = seq(2,24,2))

print(p_cwt_peak)

Figure 6.16 CWT coefficients main peak showing the

local maximum in both intensity and scale.

Another way to analyze the wavelet coefficients is to plot the
locations of the local maxima using a sliding window. This is
done using the getLocalMaximumCWT() function.

local_max <- getLocalMaximumCWT(wCoefs)

The local_max matrix is similar to the wCoef matrix, except
that locally maximum values are set to 1 and all other values
are set to 0. This allows the visualization of all peaks
independent of amplitude and their scales.

local_max_t <- as_tibble(local_max) |>

 mutate(rt=t, .before=as.character(scales[1]))

local_max_t_long <- local_max_t |>

 pivot_longer(cols=!"rt", names_to="scale",

values_to = "local_max") |>

 mutate(scale=as.numeric(scale))

Now the local maxima can be plotted like the wavelet
coefficients (Figure 6.17).

Figure 6.17 Local maxima of CWT coefficients.

p_local_max <- local_max_t_long |>

 ggplot(aes(x = rt, y = scale, fill = c("white",

pal$blue)[local_max + 1])) +

 geom_raster() +

 scale_fill_identity() +

 coord_cartesian(xlim=c(2,18), ylim=c(1,24),

expand = FALSE) +

 scale_x_continuous(breaks = seq(2,18,1)) +

 scale_y_continuous(breaks = seq(2,24,2)) +

 xlab("Retention Time (sec)") +

 ylab("CWT Coefficent Scale") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 ggtitle(label = "CWT Local Maxima Sample 11

Quant Trace",

 subtitle = "Mexican Hat Wavelet Scales 1-

24")

print(p_local_max)

6.3.5 Wavelet Noise Estimation

Like the smoothed trace estimate for noise used in Section
6.3.2, the smallest scale wavelet coefficients can be used to
estimate noise in regions of the trace [104, 177].

p_scale_1 <- ggplot() +

 scale_y_continuous(labels = inten_label) +

 geom_point(aes(x=t, y=wCoefs[,1]), shape=1) +

 geom_vline(xintercept=2, color=pal$darkorange)

+

 geom_vline(xintercept=6, color=pal$darkorange)

+

 xlab("Retention Time (sec)") +

 ylab("CWT Coefficient Intensity") +

 ggtitle(label= "CWT Coefficients - Sample 11",

 subtitle = "Mexican Hat - Scale 1") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

)

print(p_scale_1)

Notice the similarities between Figures 6.18 and 6.7. The
smallest scale wavelet coefficients are from the highest
frequency components in the trace, so they are similar to the
deviations computed from using a smoothed trace. The CWT
coefficients also show the same trace intensity dependency
as the deviation vector, giving more evidence to the
heteroskedastic nature of LC-MS data discussed throughout
this chapter. As suggested by Du et al. [177], the standard
deviation of the region without chemical noise can be used to
determine the noise in the trace because the values are
approximately normally distributed.

Figure 6.18 Wavelet coefficients from the scale = 1

transform of the sample 11 trace.

noise_cwt <- wCoefs[which(t<6),1]

shapiro.test(noise_cwt)

##

Shapiro-Wilk normality test

##

data: noise_cwt

W = 0.97843, p-value = 0.3045

sd(noise_cwt)

[1] 523.6226

The noise estimate using the lowest CWT scale is close to the
MLE estimate from the raw data but lower than the estimate
when the raw data’s censored nature is considered. It is
larger than the standard deviation computed by subtracting
the raw from the SG smoothed data, which suggests that the
scale 1 Mexican hat wavelet did more smoothing than the
length 11 SG filter.
What the SG and Gaussian filters do to the data before the
derivatives are taken can be understood by looking at the
data from the perspective of frequency content. What I have
been doing with both the SG convolution and the CWT
convolution can be seen using Fourier analysis since the
convolution in the time domain is identical to multiplication
in the frequency domain. No matter what shape I use to
perform a running average-type smoothing of the data, it will
affect which frequencies present in the data are attenuated
or amplified by the multiplication operation.

6.3.6 Using Wavelets to Find the Start and End

of a Peak Start

The xcms package has functions to compute peak parameters
from the CWT. The function peaksWithCentWave() picks all the
peaks in a trace that fit between a minimum and maximum
peak width specified in the retention time t units. For the
example trace, the peak FWHM is approximately 0.9 seconds,
and from the trace plot and the CWT plot, there is a second
peak at a later time, which is smaller and narrower. In this
case, I’ll specify peaks between 0.5 and 1.5 seconds wide.
This will be used to compute the scales for the analysis.

peak_width <- c(.5, 1.5)

peak_info <- as_tibble(peaksWithCentWave(y, t,

peakwidth = peak_width,

 verboseColumns = TRUE))

|>

 dplyr::select(-c("into", "sn", "egauss", "mu",

"sigma",

 "h", "f", "dppm", "lmin", "lmax")) |>

 dplyr::mutate(scale=as.integer(scale),

 scpos=as.integer(scpos),

 scmin=as.integer(scmin),

 scmax=as.integer(scmax))

print(peak_info[1,])

A tibble: 1 x 9

rt rtmin rtmax intb maxo scale scpos scmin

scmax

<dbl> <dbl> <dbl> <dbl> <dbl> <int> <int> <int>

<int>

1 7.99 6.97 8.83 202576. 214400 6 100 94

106

The output of the xcms peak-picking process generates basic
parameters, and when verboseColumns is set to TRUE, it
generates a few more. In the code above, I’ve kept for display
the most useful for this example. The retention time (rt), the
peak-start (rtmin), the peak-end (rtmax), the intensity of the
apex measured from 0 (maxo), and the wavelet scale that was
used for peak detection (scale). It also generates the index of
the apex (scpos) as well as the index of the peak start (scmin)
and peak end (scmax).
The apex index was found to be 100 using the get_peak_apex()
function from Section 6.2.2. The retention time reported by
peaksWithCentWave() is the maximum of the CWT coefficients,
which includes the Gaussian smoothing associated with the
Mexican hat at scale 6.

which(near(max(wCoefs[,"6"]),wCoefs[,"6"]))

[1] 100

The CWT method gives the same retention time for the peak
as the SG-smoothed trace apex. However, there is a
difference between the two algorithms for locating peak start
and end. This will affect how much of the peak is integrated
to calculate area and concentration.

p_compare <- p +

 ggtitle(label="Peak Start - Apex - End Times",

 subtitle = "derivative and centWave

algorithms") +

 coord_cartesian(xlim=c(6,11), ylim=c(0, 2.5e4)) +

 geom_vline(aes(xintercept = t[peak_start_index],

color='Derivative'),

 linetype= "dashed") +

 geom_vline(aes(xintercept = t[peak_end_index],

color='Derivative'),

 linetype= "dashed") +

 geom_vline(aes(xintercept = peak_info$rtmin[1],

color='centWave'),

 linetype= "dashed") +

 geom_vline(aes(xintercept = peak_info$rtmax[1],

color='centWave'),

 linetype= "dashed") +

 scale_color_manual(name='Algorithm: ',

 breaks=c('Derivative',

'centWave'),

 values=c(pal$green,

pal$darkorange)) +

 theme(legend.position = "bottom")

print(p_compare)

The approach in xcms is to start at the scmin index and then
walk down the front and back of the peak until the threshold

is crossed to determine the start and end of the peak. From
Figure 6.19, it would appear that peaksWithCentWave()
produces start and end times that are more conservative than
the derivative method. A significant part of the peak, which is
statistically above the estimated noise, is ignored on the tail
of the peak. As long as it’s done consistently, I will show that
this conservative approach can produce acceptable
quantitative results.

Figure 6.19 Comparing peak start and end times

computed from derivatives and xcms.

6.4 Frequency Analysis

It should be clear that the main goal of smoothing and peak

detection, as described so far, is to approximate two primary
functions: the function that generates a signal as a result of
the presence of a chemical, i.e. the deterministic component
and the function that generates a signal as a result of random
processes which obscure or corrupt the deterministic signal,
i.e. the random component. Function estimation has, so far,
been described in both parametric and nonparametric terms.
The random component has been ascribed to some function,
like the Gaussian function, with parameters that need to be
estimated to characterize the noise (like standard deviation).
When using the SG filters, the deterministic component of
the signal is approximated by local linear regressions of a
selected polynomial function. There are no parameters
ascribed to the specific polynomials representing the
behavior of the system, but rather, the deterministic function
is simply approximated by a collection of linear functions. In
the wavelet analysis presented, a specific function related to
an assumed underlying function for the deterministic
component (again Gaussian) is used for the deterministic
function approximation. In both cases, the deterministic
component of the trace is approximated in order to obtain
data that are less corrupted by noise (smoothed) to carry out
calculations to obtain the first and second derivatives of the
trace, which are exceptionally sensitive to noise.
In calculus and analysis, it is common to use an infinite series
to represent a function and then truncate the series to make
a problem tractable. When using a truncation approach to
approximation, the rate of convergence of the series is
important. A mathematical series that converges rapidly for
the deterministic component of the data and slowly for the
random component is a logical choice for using truncation to
isolate chemical information from random noise.
In signal processing, the Fourier series [162, 181] is a
natural selection because it converges very rapidly. The
coefficients of the terms drop by for smooth functions
with smooth first and second derivatives [163]. For functions

with rough first and second derivatives, the series converges
much more slowly. That means that the deterministic
component of chromatography can be represented by a small
early subset of the series, while the random component is
represented by later terms, which, when truncated, serve to
reduce the contribution of random processes to the signal in
a trace. By performing Fourier analysis on the trace, the
frequency content of the deterministic component can be
selected, and a function can be designed to eliminate
corrupting noise.
Another convenient feature of the Fourier series is that it can
be generated by performing the Fourier transform (FT),
which converts data collected in the time domain (time is the
x-axis) to the frequency domain (frequency is the x-axis). The
time domain and the frequency domain are complementary,
and one important relationship between the two is that
convolution (moving average) in the time domain is
equivalent to multiplication in the frequency domain.
Any function that lowers the high-frequency coefficients of
the Fourier series of raw data will cause it to be smoother.
Selecting the function and the domain in which it is applied
(time domain or frequency domain) requires some thought.
Ideally, a square function, which is 1 where frequencies
contain chemical information and 0 everywhere else, could be
multiplied by the frequency-domain version of the data and
then converted back to the time domain. However, as I will
show in the next section, a square in the frequency domain
transforms to a time-domain function with ripples that can
badly distort the data. The same is true for the simple moving
average in time. The square used in the time domain contains
ripples in the frequency domain that will attenuate
deterministic signal frequencies and amplify random signal
frequencies, again distorting the data in ways that could
interfere with the analysis.

6.4.1 Fourier Analysis of Traces

Fourier analysis is one of many function approximations that
use a basis system to approximate the data with an
underlying function. A basis system is a way of combining
(usually additive) functions to approximate a known or
unknown function. The Fourier series uses a sum of
trigonometric functions as the basis system and assumes that
the data can be represented by a sum of and
functions. There are many basis systems used in signal
processing. Other common approaches include splines [182,
183], which are a piecewise polynomial basis system.
Exponential and power series bases can be used, as well as
polynomial bases. The Taylor and Maclaurin series taught in
calculus are specialized methods for estimating polynomial
expansions. Earlier in this chapter, I described the use of
polynomials via the SG filters, as well as wavelets, of which I
only described one basis system: the Maar functions. There
are many other basis sets to choose from. For example, tree-
based methods [184, 185] are a step-function basis system,
which can be thought of as an order one B-spline with one
interior knot [182].
There are two concepts that are critical to understanding the
frequency analysis of data using the Fourier series and the
FT. First, since the basis functions are periodic trigonometric
functions, time-bound data like chromatography, and mass
spectrometer data are treated as if they were periodic. A
metaphor for this approach is to imagine the data printed on
a sheet of paper that is rolled into a tube so that the last data
point and the first data point connect. The metaphor is useful
because the trigonometric functions are operations on a
circle, and the Fourier series is defined on with a
period of . This requires mapping the x-axis of instrument
data onto a circle so finite data is processed as periodic data
when using a Fourier series approximation of empirical data.

(6.3)

(6.4)

(6.5)

In practice, this equation is represented as:

where

All of the math for the FT is done by R, using the base stats
package and the fft() function, which implements the Fast

Fourier Transform (FFT) [186]. The FFT is an optimized
Discrete Fourier Transform (DFT). Textbooks, such as
Bracewell’s The Fourier Transform and Its Applications

[162], usually spend a significant amount of time teaching
the continuous version of the FT, which is used to find
analytic solutions to transform an equation from one domain
to another. When FT is performed on discrete sampled data
rather than analytical equations, the DFT approach is
typically used. The DFT shown in Eqs. (6.3–6.5) is meant to
point out that the DFT (and FFT) produce coefficients that
are complex numbers.
The real part of the coefficient represents the amplitude of
the sinusoidal function, and the imaginary part represents its
phase (the angle of the sine/cosine function), which can be
thought of as a time shift. This will become important when
working with the output of the DFT.

Since the frequencies computed from a time domain dataset
can only represent 1/2 the total number of data points and
the finite dataset is converted into an infinite set by treating
it as a repeating loop, another consequence of performing an
FT is that the output looks like it is duplicated. This is, in
fact, the case. The output runs from frequency 0 to 1/2 the
sampling frequency, and then the rest of the array is filled
with a mirror image of the first half.
Because the results of the DFT are complex numbers, to get a
sense of how the transform works, I have to decide what I
want to plot. The FT gives the amplitude of the sinusoidal
function as the real part of the complex number and its phase
as the imaginary part. While it is instructive to plot both the
amplitude and phase, I am interested in using the DFT to
separate signal from noise. My main interest is how much

power is present at each frequency component of the trace.
In signal processing, this is known as power density

estimation, and the DFT is one of the most common ways to
perform this calculation [181]. The power or energy is the
squared value of the magnitude of the coefficient . The
magnitude, or modulus of an FT coefficient, can be computed
either using the abs() function or the base package Mod()
function. In most R programs, you will see magnitudes
computed using the abs() function, which is equivalent since
both compute . Base R provides complex
number functions like Re() and Im(), which access the real
and imaginary components of a complex number.

create a complex number in R

c <- complex(real=0.5, imaginary = 0.5)

c

[1] 0.5+0.5i

get the magnitude (length of the vector)

print(sprintf("Magnitude %0.5f, Absolute Value %0.5f",

Mod(c), abs(c)))

[1] "Magnitude 0.70711, Absolute Value 0.70711"

The FFT of the trace in Figure 6.1 is computed using the
fft() function from the stats package and then converted to
a magnitude using abs().

ft_y <- abs(fft(y))

rad_x <- seq(0, 2*pi, by=(2*pi/length(y)))[1:length(y)]

And then plotted (Figure 6.20) in the natural units of the
circle (radians) over which and are defined:

p_fft <- ggplot() +

 scale_y_continuous(labels = inten_label) +

 geom_line(aes(x=rad_x, y=ft_y), linewidth=0.75,

color=pal$blue) +

 xlab(TeX(r"($\textrm{Radians\;}(0-2\pi)$)")) +

 ylab("Magnitude") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

) +

 ggtitle(label = "Raw FFT of Sample 11 Quant

Chromatogram")

print(p_fft)

Figure 6.20 DFT of the sample 11 quant trace

obtained using the FFT algorithm.

Figure 6.20 makes it easy to see how the left side wraps
around to match the right side of the plot. If I change the x-
axis from radians to frequency, which is a more natural way
to use the data, the entire right half of the plot is removed
because of the Nyquist criteria, which limits the highest
frequency that can be determined to half the sampling
frequency. In plots and calculations done from this point on, I
will truncate the x-axis to the Nyquist limit. The data in
Figure 6.20 can be plotted using frequency units and obeying
the Nyquist criteria.

sample_length <- length(y)

nyquist_length <- as.integer(floor(sample_length / 2)

+1)

nyquist_limit <- sampling_frequency / 2

freq_x <- seq(0, nyquist_limit,

by=nyquist_limit/nyquist_length)[1:(nyquist_length)]

freq_y <- ft_y[1:(nyquist_length)]

Now that the frequency spectrum component of the FFT has
been selected, it can be plotted (Figure 6.21). I could use
power (magnitude squared), but since the chromatogram is
not an electrical transmission, converting to signal power
adds little extra value. The objective is to find the frequencies
that represent the smooth signal and truncate the series at
the point where the frequencies represent noise.

Figure 6.21 The magnitude spectrum of the sample

11 quant trace in the Nyquist limit.

p_freq <- data.frame(x=freq_x, y=freq_y) |>

 ggplot(aes(x=x, y=y)) +

 scale_y_continuous(labels = inten_label) +

 geom_line(linewidth=0.5, color=pal$gray) +

 geom_point(shape=1) +

 xlab("Frequency (Hz)") +

 ylab("Magnitude") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

) +

 ggtitle(label = "Frequency Spectrum of Sample

11 Quant Chromatogram",

 subtitle = "Magnitude Within the

Nyquist Limit")

print(p_freq)

In both Figures 6.20 and 6.21, the rapid drop off of the
coefficients is clear. In the chromatogram, most of the signal
strength is below 2 Hz. This is in the range of what was
calculated in Section 6.2.4. The FWHM of the main peak is
0.9 seconds, which you can imagine as roughly having the
shape of a sine wave with a frequency of 1/t or 1.1 Hz. The
lower frequencies in Figure 6.21 represent the base of the
peak all the way down to the roughly flat part of the
chromatogram, which you can think of as having a frequency
close to 0, which is a flat line in the time domain. The higher
frequencies in the signal represent the rougher parts of the
chromatogram and, thus, the random noise components of
the trace. Removing these coefficients (by setting them to
zero) will leave only the smooth function, which carries the
chemical information in the trace.
It’s also apparent from the FFT plot that truncating the series
too early will remove some of the deterministic parts of the
data. When this occurs, it’s commonly referred to as over-

smoothing, and leads to distortion of the peak shape. In
addition to not wanting to attenuate any of the deterministic
components of the trace, smoothing should not accidentally
amplify any of the random components. When that occurs,
the smoothing process can generate filter artifacts in the
chromatogram, which can show up as ripples before and
after a real peak or as a peak in the noise region where no
peak existed before applying the filter. Since both distortions
are undesirable, in the next section, I will look at how to see

what a smoothing process does to data in the frequency
domain and show a way to select an optimum digital filter.

6.4.2 Analyzing Digital Filters

In Section 6.3.1, I used the SG filter in order to combine
smoothing with numerical differentiation. The SG filters are
normally applied like moving average (MA) smoothers.
Mathematically, the filter coefficients are convolved with the
raw data. A key idea in Fourier analysis is the convolution

theorem [162], which simply states that convolution in the
time domain is equivalent to multiplication in the frequency
domain. That means that in moving average-type filters, the
frequency-domain coefficients of the filter are multiplied by
the frequency-domain coefficients of the data. For smoothing
to occur, multiplying the data with the filter has to result in
high-frequency coefficients being reduced.
The easiest smoothing process to understand is a simple
moving average, sometimes called a box car filter. The box
car filter gets its name from its square shape in the time
domain. While this is simple to understand in the time
domain, the effect on real data is not so simple when you see
what happens to a simple time domain square in the
frequency domain. The gsignal package includes functions to
build a wide range of digital filters, characterize them, and
apply them to data.
The coefficients of a filter, which performs a moving average
of a particular length, can be computed using the boxcar()
function. The function will generate a filter where all the
coefficients are 1 for whatever length you choose. In order
for the filter to produce smooth data of the same amplitude
as the raw data, the filter coefficients have to be normalized

so that they sum to 1. The normalization causes the filter to
perform the averaging in the name “moving average.” Some
filter design functions will produce normalized coefficients,

but it’s always a good idea to ensure filter coefficients sum to
1.

bc <- boxcar(11)

bc <- bc / sum(bc)

print(bc)

[1] 0.09090909 0.09090909 0.09090909 0.09090909

0.09090909 0.09090909

[7] 0.09090909 0.09090909 0.09090909 0.09090909

0.09090909

Digital filters don’t get simpler than that! A straight line that
is convolved with the data. One thing to remember with time-
domain convolution is that the filter values are multiplied by
the raw data values starting at the beginning of the data and
then shifted by one position in the raw data until the last
filter coefficient is aligned with the last data point in the raw
data. At each step, the sum of the multiplied values is
substituted for the central value of the filter. For example,
with a nine-point Boxcar filter, the center point is the fifth
coefficient. The first four raw data points are consumed, but
there is no value for them from this filter. In normal time-
domain filtering, you always lose half the width of the filter at
the beginning and end of the raw data trace. There are ways
to replace the missing data so that the smoothed trace is the
same length as the raw trace. The gsignal function conv()
solves this problem by extending the length of the overall
result vector. There are other approaches, including simply
using the unsmoothed data to replace what was left out by
the convolution, or you can smooth it with shorter filters,
which would leave only the start and end data points
unsmoothed.
The quadratic SG filter of length 11 was used in Section
6.3.1. It is worth comparing the Boxcar filter to the SG filter
to see what the SG filter is doing differently. The gsignal
package has a function sgolay(), which will compute the SG

filter coefficients of different polynomial orders, lengths, and
different orders of differentiation. The sgolay() function
creates a matrix of coefficients that can be used to filter the
beginning, middle, and end of the raw data with shorter
filters. Since I am using conv(), I only need the coefficients in
the center of the matrix. For SG filters with length 11, this is
the middle row (row 6). The filter used earlier in this chapter
was a quadratic or second-order polynomial. The sgolay()
function produces a coefficient matrix, and the default output
is the smoothing filter with no differentiation.

sg <- sgolay(p=2, n=sg_length)[ceiling(sg_length/2),]

sg <- sg/sum(sg)

print(sg)

[1] -0.08391608 0.02097902 0.10256410 0.16083916

0.19580420 0.20745921

[7] 0.19580420 0.16083916 0.10256410 0.02097902

-0.08391608

To see the filter shapes, I will create a plot (Figure 6.22) of
the coefficients:

bc_x <- seq(0,length(bc)-1)/(floor(length(bc))-1)

sg_x <- seq(0,length(sg)-1)/(floor(length(sg))-1)

p_filter_coeff <- ggplot() +

 coord_cartesian(ylim=c(-0.1, 0.3)) +

 geom_line(aes(x=bc_x, y=bc, color="Box Car"),

 linewidth=0.5) +

 geom_point(aes(x=bc_x, y=bc), shape=1) +

 geom_line(aes(x=sg_x, y=sg, color="SG

Quadratic"),

 linewidth=0.5) +

 geom_point(aes(x=sg_x, y=sg), shape=1) +

 ggtitle(label = "Filter Coefficients") +

 xlab("Filter Index (0-1)") +

 ylab("Magnitude") +

 scale_color_manual(name='Filter: ',

 breaks=c('Box Car', 'SG

Quadratic'),

 values=c(pal$green,

pal$darkorange)) +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

) +

 theme(

 legend.position.inside = c(.99, 1.0),

 legend.justification = c("right", "top"),

 legend.box.just = "right",

 legend.margin = margin(4, 4, 4, 4)

)

print(p_filter_coeff)

Figure 6.22 Filter coefficients for Boxcar and SG

filters. Both are length 9, and the SG filter is a

quadratic (order 2).

As expected, Figure 6.22 shows that the SG filter has a
parabolic shape consistent with its quadratic form. Now, I
can compare how these two filters perform on the data.

smooth_y_bc <- gsignal::conv(y, bc, shape="same")

smooth_y_sg <- gsignal::conv(y, sg, shape="same")

The conv() function returns the full convolution by default
(shape="full"), which has a length of length(y) + length(bc)
-1. To get a filtered vector the same length as the raw data
vector, the raw vector has to be the first argument in the

function, and the shape has to be set to “same.” This will take
the central part of the convolution of the same length as the
original raw data.

p_sg_bc_smooth <- ggplot() +

 scale_y_continuous(labels = inten_label) +

 geom_line(aes(x=t, y=smooth_y_sg, color='SG

Quadratic'),

 linewidth=0.5) +

 geom_line(aes(x=t, y=smooth_y_bc,

color='Boxcar'),

 linewidth=0.5) +

 geom_point(aes(x=t, y=y), shape=1) +

 scale_color_manual(

 name='Filter: ',

 breaks=c('Boxcar', 'SG Quadratic'),

 values=c(pal$blue, pal$red)) +

 ggtitle(label = "Smoothing with Boxcar and

Savitzky-Golay",

 subtitle = sprintf("Length %d, SG

(order=2)", sg_length)) +

 xlab("Retention Time (s)") +

 ylab("Intensity (counts/s)") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

) +

 theme(

 legend.position.inside = c(.95, .95),

 legend.justification = c("right", "top"),

 legend.box.just = "right",

 legend.margin = margin(6, 6, 6, 6)

)

print(p_sg_bc_smooth)

This code generates Figure 6.23, where it can be seen that
the Boxcar filter distorts the data at both the apex and
slightly at the base of the peak. Based on the discussion
earlier, attenuation of frequencies that are part of the signal
will cause distortion. To see these effects directly, comparing
the frequency response of these two filters gives a clue to
what is happening, as well as how to do an even better job.

Figure 6.23 Raw data smoothed with Boxcar and

Savitzky–Golay filters. Note the distortion in the peak

apex for the boxcar compared to the SG smooth.

The gsignal package has a function called freqz(), which can
be used to visualize the frequency content of signals and
filters.

bc_fr <- freqz(bc, fs=sampling_frequency)

sg_fr <- freqz(sg, fs=sampling_frequency)

Since freqz() uses the DFT to compute the coefficients, they
are complex, and the lowest frequency (0) is normalized to
1.0:

bc_fr$h[1]

[1] 1+0i

And the magnitude is calculated with abs():

abs(bc_fr$h[1])

[1] 1

This is how I get the y-values for the frequency response plot.

p_freqz <- ggplot() +

 geom_line(aes(x=sg_fr$w, y=abs(sg_fr$h),

color='SG Quadratic'),

 linewidth=0.5) +

 geom_line(aes(x=bc_fr$w, y=abs(bc_fr$h),

color='Boxcar'),

 linewidth=0.5) +

 geom_line(aes(x=freq_x, y=freq_y/max(freq_y),

color='Raw Trace'),

 linewidth=0.5) +

 scale_color_manual(name='Signal: ',

 breaks=c('Boxcar', 'SG Quadratic',

'Raw Trace'),

 values=c(pal$blue, pal$red,

pal$black)) +

 ggtitle(label = "Frequency Response of Boxcar

and Savitzky-Golay",

 subtitle = "Overlayed on the Frequency

Content of the Raw Trace") +

 xlab("Frequency (Hz)") +

 ylab("Relative Magnitude") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

) +

 theme(

 legend.position.inside = c(.95, .95),

 legend.justification = c("right", "top"),

 legend.box.just = "right",

 legend.margin = margin(6, 6, 6, 6)

)

print(p_freqz)

This code produces Figure 6.24, which shows that the length
9 Boxcar filter reaches a relative magnitude of zero
(maximum attenuation) at a much lower frequency than the
SG filter. Worse, the Boxcar starts attenuating at a very low
frequency, which means terms in the Fourier series needed
to approximate the chromatographic peak are being lowered
in a more severe way than the SG case for the same filter
width. Both filters have two undesirable properties: they “roll
off” in a sloping manner rather than in a sharp cut at the end
of the deterministic component of the signal, and they have
ripples, in which higher frequencies are not strongly
attenuated which means that a new ripple will be created in
the data maximized at the top of each hump in the filter
frequency response.

Figure 6.24 Frequency response of the Boxcar and

Savitzky–Golay filters showing the difference in

attenuation in the low-frequency range. Excess

attenuation for the boxcar causes peak distortion

compared to the SG filter.

The distortion and ripple effects of both Boxcar and SG are
well-known problems, leading some to suggest that we
should stop using SG filters altogether [187]. However, for a
simple, short filter that can be easily used, especially in
combination with calculating derivatives, the SG piecewise
polynomial function approximation works surprisingly well.

6.4.3 Optimal Filters

As discussed at the start of Section 6.4, it is possible to use
the rapid convergence of the Fourier series for smooth
functions to design an optimal filter. In this section, I show
one way to design a good moving average type filter based on
the frequency characteristics of the data with a better-
behaved frequency response using the functions in the
gsignal package.
The approach I will describe has two steps. First, determine a
cutoff frequency that defines a boundary between the
deterministic component of the signal and the random
component. Second, select a windowing function that
minimizes artifacts in the time domain and has a reasonable
length.
Felinger [188] suggests using an approach developed by
Lanczos [189] to empirically determine the optimum cutoff
frequency based on the variance of the Fourier coefficients.
This is based on the convergence rate of the Fourier series
for smooth functions. The high-frequency coefficients are low
and effectively constant until the deterministic frequency
components appear at lower frequencies. Lanczos suggested
computing the variance of the coefficients starting from the
end of the frequency spectrum and iteratively adding more
elements to the array to produce a new variance number
until reaching the start of the array.
The function that performs the variance calculation of cutoff
frequency is shown below. Lanczos points out that the exact
cutoff value is not critical. There are at least two reasons for
this. First, the noise in the data itself could make the cutoff
different by a few coefficients, and second, a windowing
function will ultimately be applied to the square cutoff which
will determine where the filter starts to attenuate the signal.
In the function get_cutoff(), I use a robust threshold that
computes the median value as the expected value of the

variance and then uses the median absolute deviation (MAD)
mad() as the upper and lower range of the variance. The
cutoff frequency is the frequency value where the variance
value drops below the upper MAD value of the median. Below
this threshold, the DFT coefficients are considered noise,
which can be attenuated without distorting the
chromatographic peak shape.
The get_ft_variance() function calculates the backward
calculated variance values of the FT coefficients using the
var() function.

get_ft_variance <- function(y_ft) {

 s2_list <- NULL

 y_length <- length(y_ft)

 for(i in y_length:2) {

 s2 <- var(y_ft[y_length:(i-1)])

 s2_list <- append(s2_list, s2)

 }

 rev(s2_list)

}

The get_cutoff() function calculates the threshold variance
starting at the lowest frequency and loops toward the highest
frequency, stopping when the variance is lower than the
upper MAD bound on the median value. It returns both the
cutoff frequency and the threshold value.

get_cutoff <- function(freq_x, freq_y) {

 s2_list <- get_ft_variance(freq_y)

 freq_thres <- median(s2_list) + stats::mad(s2_list)

 for(i in 1:length(s2_list)) {

 if(s2_list[i] < freq_thres) {

 freq_cutoff_index <- i + 1

 break

 }

 }

 c(freq_x[freq_cutoff_index], freq_thres)

}

The cutoff frequency and the threshold can then be
calculated for use in the filter design.

cutoff <- get_cutoff(freq_x, freq_y)

cutoff_freq <- cutoff[1]

threshold <- cutoff[2]

The method can be visualized by plotting the values of
with the threshold and the cutoff. First, get the variance list:

s2_list <- get_ft_variance(freq_y)

Then cutoff can be visualized using ggplot():

p_ft_variance <- ggplot() +

 coord_cartesian(ylim=c(0, 7e9)) +

 scale_y_continuous(labels = inten_label) +

 geom_line(aes(x=freq_x[1:(length(freq_x)-1)],

y=s2_list,

 color='Variance'),

 linewidth=0.5, key_glyph = draw_key_path) +

 geom_hline(aes(yintercept = threshold,

color='Threshold'),

 linewidth=0.5, key_glyph = draw_key_path) +

 geom_vline(aes(xintercept=cutoff_freq,

color='Cut Off'),

 linewidth=0.5, key_glyph = draw_key_path) +

 scale_color_manual(name='Signal: ',

 breaks=c('Variance', 'Cut Off',

'Threshold'),

 values=c(pal$black, pal$darkorange,

pal$blue)) +

 ggtitle(label = "Backward Calculated FT

Variance",

 subtitle=sprintf("Cutoff Frequency:

%0.2f Hz", cutoff_freq)) +

 xlab("Frequency (Hz)") +

 ylab(TeX(r"(σ^2)")) +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

) +

 theme(legend.position = "bottom")

print(p_ft_variance)

This code produces Figure 6.25 which shows that the median
value for a threshold does a reasonable job of finding the
level below which coefficients are noise. The cutoff frequency
of 1.57 Hz also seems sensible based on the data. If I know
the frequency cutoff for real signal, you could ask, “why not
just cut the coefficients off there, and transform back to the
time domain?” The answer is in another fundamental identity
in Fourier analysis. A square in the frequency domain is the

 or sinc function. Since I showed the Mexican hat and the
other filter functions earlier, I will show the FT that is
obtained from the square.

Figure 6.25 Backward calculated sum of the variance

of the FT coefficients showing the median value as

the threshold and the calculated cutoff frequency.

calculate the index of the region of the full DFT

that will be set to zero

low_pass_begin <- which(freq_x==cutoff_freq)

low_pass_end <- length(ft_y)-low_pass_begin + 2

The central part of Figure 6.20 begins at low_pass_begin and
ends at low_pass_end. The function that will be transformed
has a value of 1, and then a central region with a value of 0,
and ends back at 1. This is a square function centered at
zero.

h_freq<-rep(1,265)

h_freq[low_pass_begin:low_pass_end]<-0

cutoff_y <- fft(h_freq, inverse = TRUE)

cutoff_y <- c(cutoff_y[134:265],cutoff_y[1:133])

range_x <- seq(-0.5, 0.5, by=(1/length(cutoff_y)))

[1:length(cutoff_y)]

p_sinc <- ggplot() +

 geom_line(aes(x=range_x,

y=Re(cutoff_y)/length(cutoff_y)),

 linewidth=0.75, color=pal$lightblue) +

 xlab("Function Range") +

 ylab("Amplitude") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

) +

 ggtitle(label = "Sinc Function Filter from Simple

Frequency Cutoff")

print(p_sinc)

This code produces Figure 6.26. It’s not hard to imagine what
will happen to the raw data if it’s convolved with a filter of
this shape. To see the effect, I can set the raw data frequency
coefficients in the cutoff region to zero, and take the inverse

FT.

Figure 6.26 The sinc function is created in the time

domain by a simple cutoff in the frequency domain.

trunc_ft_y<-fft(y)

trunc_ft_y[low_pass_begin:low_pass_end] <- 0

trunc_y <- fft(trunc_ft_y, inverse = TRUE)

And then plot (Figure 6.27) the time-domain version of the
data:

p_sinc_smooth <- ggplot() +

 coord_cartesian(ylim=c(-10,5000)) +

 scale_y_continuous(labels = inten_label) +

 geom_line(aes(x=t,

y=abs(trunc_y)/sample_length, color='Sinc Filter'),

 linewidth=0.75) +

 geom_point(aes(x=t, y=y, color='Raw Data'),

shape=1, size=1) +

 scale_color_manual(name='',

 breaks=c('Sinc Filter', 'Raw Data'),

 values=c(pal$lightblue, pal$black),

 guide = guide_legend(override.aes =

list(

 linetype = c("solid",

"blank"),

 shape = c(NA,1)

))) +

 ggtitle(label="Smoothing with Frequency

Truncation",

 subtitle = "Sinc Function") +

 xlab("Retention Time (s)") +

 ylab("Intensity (counts/s)") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

) +

 theme(

 legend.position.inside = c(.95, .95),

 legend.justification = c("right", "top"),

 legend.box.just = "right",

 legend.margin = margin(6, 6, 6, 6)

)

print(p_sinc_smooth)

Figure 6.27 Raw data filtered by simple truncation of

high-frequency coefficient results in artifacts created

by the sinc function in the time domain.

As expected, there are ringing-like distortions throughout the
smoothed data. In Figure 6.27, the ripples are not actually in
the data but introduced by the sinc function. The solution is
to window the sinc function to lower the intensity of the
ripples. This is a very common task in signal processing, and
the gsignal package provides a large number of window
functions that can be used. Depending on your data, you may
find one or more of the windowing functions work best for

your situation. In chromatography, it is desirable to have the
filter concentrate most of the signal power in the main lobe
where chemical information is present, rather than in the
side lobes, which can be seen in Figure 6.24. The Kaiser

window [190, 191] has exactly these properties. I will show
how to design a Kaiser window using the kaiserord()
function to produce the window parameters for use with
fir1() function and the kaiser() function to design a
convolution digital filter that has the desired cutoff and
removes the ripple artifacts.
The first step is to determine the parameters of the Kaiser
window based on the cutoff computed with get_ft_variance()
combined with basic parameters, such as the magnitude of
the upper and lower coefficients. Just like above, I’ll use 1 for
the upper magnitude (passband) and 0 for the lower
(stopband). Another parameter is how much ripple in the
frequency domain is allowed in the passband and the
stopband.

bands <- c(cutoff_freq, cutoff_freq + 1)

magnitude <- c(1,0)

ripple_amplitude <- 0.01

The bands and magnitude parameters indicate that up to the
cutoff frequency, I want to pass all the frequencies, and then
I want to attenuate to zero the frequencies 1 Hz above the
cutoff. The more narrow the band is set, the longer the filter
will be. Remember that the longer the filter, the more raw is
lost (or is left unsmoothed) at the beginning and end of a
trace. To keep the filter length reasonable, you should
experiment based on the total number of data points you
have and the sampling frequency of your system. For the
current example, a 1 Hz wide band gives reasonable
performance. The ripple_amplitude parameter specifies how
much ripple or ringing in the frequency domain is allowed.

Look at the R help page for kiaserord() for more details on
the design formulas used.

kord <- kaiserord(bands, magnitude, ripple_amplitude,

fs=sampling_frequency)

kord

$n

[1] 38

##

$Wc

[1] 0.2479699

##

$type

[1] "low"

##

$beta

[1] 3.395321

##

attr(,"class")

[1] "FilterSpecs"

The output of kaiserord() is the length (called the filter
order) of the filter (n=38), the passband edge where 1 is the
Nyquist frequency, and beta which is the shape parameter
for the Kaiser window. The fir1() function makes a finite

impulse response (FIR) with a single cutoff frequency, which
is just another name for the moving average type filters I’ve
been showing so far. The FIR filter design parameters are the
length, the cutoff, the type, and the window function. This is
where the Kaiser window, implemented in kaiser() function,
is applied. The Kaiser window has to be one longer than the
order and be given the shape parameter. I manually
normalize the scale so that the entire filter sums to 1, so the
scale parameter for fir1() is set to FALSE. The result is
normalized filter coefficients that can be used as a
convolutional filter in the time domain.

fir <- fir1(kord$n, kord$Wc, type="low", scale=FALSE,

kaiser(kord$n+1, beta=kord$beta))

fir <- fir / sum(fir)

The filter coefficients generated are quite different from the
Boxcar and SG filters:

fir_x <- seq(0,length(fir)-1)/(floor(length(fir))-1)

p_filter_compare <- p_filter_coeff +

 coord_cartesian(ylim=c(-0.1, 0.3)) +

 geom_line(aes(x=fir_x, y=fir, color="Kaiser"),

 linewidth=0.5) +

 geom_point(aes(x=fir_x, y=fir), shape=1) +

 scale_color_manual(name='Filter: ',

 breaks=c('Box Car', 'SG Quadratic',

'Kaiser'),

 values=c(pal$blue, pal$red,

pal$darkorange))

print(p_filter_compare)

Figure 6.28 shows that the Kaiser window smoothed out the
ripple in the time domain of the sinc function shown in
Figure 6.26 and will leave less distortion in the smoothed
data that the other filters as a result of beginning and ending
very close to zero, which is the entire goal of Kaiser
windowing.

Figure 6.28 The Kaiser windowed sinc function

compared to the shapes of both the Boxcar and the

SG filters. Note the similarity between the windowed

sinc function and the Mexican Hat used for CWT

analysis.

The frequency response of the Kaiser filter is also
dramatically different from the Boxcar and SG filters.

fir_fr <- freqz(fir, fs=sampling_frequency)

p_freqz_compare <- p_freqz +

 geom_line(aes(x=fir_fr$w, y=abs(fir_fr$h),

color='Kaiser'),

 linewidth=0.5) +

 scale_color_manual(name='Signal: ',

 breaks=c('Boxcar', 'SG Quadratic', 'Kaiser',

'Raw Trace'),

 values=c(pal$blue, pal$red, pal$darkorange,

pal$black)) +

 ggtitle(label = "Frequency Response of FIR

Filters",

 subtitle = "Overlayed on the Frequency Content

of the Raw Trace")

print(p_freqz_compare)

Notice that in Figure 6.29, the Kaiser filter has almost no
side nodes compared to the other filters. Also, notice a slight
ripple at the top and bottom of the frequency response.
These will be within the 0.01 (1%) limit specified.

Figure 6.29 The Kaiser windowed sinc function

compared to the frequency responses of the Boxcar

and the SG filters. The goal of the Kaiser window is to

reduce the power in the side lobes, which are

dramatically lower than the other filters.

First, smooth the data using the same convolution method
shown in Figure 6.23:

smooth_y_fir <- gsignal::conv(y, fir, shape="same")

And then plot the smoothed data:

p_fir_smooth <- ggplot() +

 scale_y_continuous(labels = inten_label) +

 geom_line(aes(x=t, y=smooth_y_fir,

color='Kaiser FIR'),

 linewidth=0.5) +

 geom_point(aes(x=t, y=y), shape=1) +

 scale_color_manual(name='Filter: ',

 breaks=c('Kaiser FIR'),

 values=c(pal$darkorange)) +

 ggtitle(label = "Smoothing with Optimized

Kaiser Windowed Sinc") +

 xlab("Retention Time (s)") +

 ylab("Intensity (counts/s)") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

) +

 theme(

 legend.position.inside = c(.95, .95),

 legend.justification = c("right", "top"),

 legend.box.just = "right",

 legend.margin = margin(6, 6, 6, 6)

)

p_sinc_windowed <- p_sinc_smooth +

 geom_line(aes(x=t, y=smooth_y_fir, color='Kaiser

FIR'),

 linewidth=0.5) +

 scale_color_manual(name='',

 breaks=c('Raw Data', 'Sinc Filter', 'Kaiser

FIR', 'Raw Data'),

 values=c(pal$black, pal$lightblue,

pal$darkorange),

 guide = guide_legend(override.aes = list(

 linetype = c("blank", "solid",

"solid"),

 shape = c(1, NA, NA)

))) +

 ggtitle(label="Frequency Truncation vs. Windowing",

 subtitle = "Kaiser Window") +

 theme(legend.title=element_blank(),

 legend.position.inside = c(0.95, 1.2),

 legend.justification = c("right", "top"),

 legend.box.just = "right",

 legend.margin = margin(4, 4, 4, 4)

)

ggarrange(p_fir_smooth, p_sinc_windowed,

 ncol = 1, nrow = 2,

 labels = c("A", "B"))

In Figure 6.30a, the smoothed plot shows very little
attenuation at the apex, and in Figure 6.30b the ripple
artifacts are significantly reduced, and the remaining values
appear much closer to a mean value for the noise in the raw
data.

Figure 6.30 Raw data smoothed with an optimized

FIR filter.

6.5 Quantification

Once a peak has been detected, its baseline corrected, and
its start and end times determined, the area of the peak must
be determined in order for it to be used for quantitative
analysis. The peak area is almost always used for
quantification instead of peak height because of
asymmetries, which are apparent in Figure 6.5 and more
common in LC separation than GC. The most basic area
calculations are performed using numeric integration of the
raw or smoothed data. To improve sample-to-sample

variation, often a stable isotopic labeled (SIL) version of the
target compound is used as an IS. The goal is to match the
chromatographic properties of the IS with the target but use
differences in molecular weight and fragmentation properties
to distinguish the two compounds. When an IS of any kind is
used, instrument response can be computed as the ratio of
the areas of the target and the IS ion peaks. Regardless of
how it is computed, the instrument response can then be
converted into a concentration using a calibration curve.
Calibration curves are made from samples with known
concentrations of the target ion. Deviations of the back-
calculated standard concentrations are used to evaluate the
calibration process, and the calculated concentrations of the
QC samples are used to evaluate the accuracy of the method
when applied to unknown samples.

6.5.1 Numeric Integration

The first step in quantification is calculating the area of the
analyte peak picked from the trace. The idea behind the
numeric integration of empirical data is quite basic. Each
data point in an LC-MS chromatogram represents a certain
amount of ion signal at a particular time. Between any two
data points, a polygon can be drawn from the baseline,
between the points, and back to the baseline. One way to
estimate the area under a curve is to sum the areas of all the
polygons that fall between the peak start and peak end. This
ancient method, also called the trapezoidal rule, is adequate
when you have very narrowly spaced data points, such as
when you are integrating a mathematical formula and can
choose whatever spacing you like. For real data, the use of
parabolas (quadratic polynomials) gives a better
approximation of the underlying smooth function
representing a chromatogram. This approach is called
Simpson’s Rule and is one of the most commonly used
methods for numerical integration of empirical data [192]

and can be performed using the int.simpsons2() function,
which is available from the fda.usc package [193].
To apply Simpson’s Rule in R, I’ll select the part of the
baseline corrected trace to be integrated using the peak start
and end calculated in the previous section.

peak_t <- t[peak_start_index:peak_end_index]

peak_y <- y_smooth[peak_start_index:peak_end_index]

And then call int.simpsons2() with the parameter equi set to
FALSE since the data in a raw data trace from LC-MS
measurements will usually not have equally spaced data
points.

peak_area <- int.simpson2(peak_t, peak_y, equi=FALSE)

print(peak_area)

[1] 210652.3

The area determined by Simpson’s rule is slightly different
from the value calculated by xcms:

peak_info[1,]$intb

[1] 202575.6

The difference can be explained by the more conservative
bounds for the peak shown in Figure 6.19. However, they are
less than 4% different, as mentioned before. If done
consistently, the end results should be comparable.
This process can be repeated for all of the traces in the
sample in order to compute area ratios for normalization
(quant area/IS area) and for identification (quant area/qual
area).

6.5.2 Normalized Instrument Response

A common task in quantitative analysis by mass spectrometry
is controlling for run-to-run variation. One of the most
common methods for normalizing a quantitative
measurement is to add IS to the sample and measure a
unique tandem mass spectrometry (MS/MS) transition.
Typically, IS normalization methods treat the concentration
of labeled ions as having no error in the quantity from pre-
analytical steps, so any change in the IS peak area is
systemic and also affects the analyte compound. Dividing the
analyte peak area by the IS peak area yields an instrument
response that removes variability from the overall
measurement.
The areas of all four traces in each of the example samples
can be computed using the procedure described in Sections
6.2 and 6.3.3 and used for normalization, calibration, and QC.
I’ve saved these values in a file so they can be loaded into a
data table.

result_table <- read_csv(file.path("data",

"results.csv"))

names(result_table)

[1] "sample" "rt_Quant" "rt_Qual"

"rt_Quant.IS"

[5] "rt_Qual.IS" "area_Quant" "area_Qual"

"area_Quant.IS"

[9] "area_Qual.IS" "height_Quant" "height_Qual"

"height_Quant.IS"

[13] "height_Qual.IS" "fwhm_Quant" "fwhm_Qual"

"fwhm_Quant.IS"

[17] "fwhm_Qual.IS" "noise_Quant" "noise_Qual"

"noise_Quant.IS"

[21] "noise_Qual.IS" "snr_Quant" "snr_Qual"

"snr_Quant.IS"

[25] "snr_Qual.IS"

The assay this example came from had the following design:
two double blank samples (meaning they had no IS added)
were run, then seven calibrators in increasing concentration,
followed by a blank with IS added, and then four QC samples.
This design can be added to the result table.

sample_type <- c(rep("blank", 2), rep("cal",7),

"blank", rep("qc",4))

known_concentration <- c(0, 0, 5, 10, 25, 100, 250,

1000, 2500, 0,

 145.2, 129.1, 1204, 602.5)

result_table$type <- sample_type

result_table$conc <- known_concentration

Now, for all the samples, the area ratios can be computed:

result_table$instrument_response <-

 result_table$area_Quant /

result_table$area_Quant.IS

The area ratios will be used to fit the instrument responses to
the known concentrations using an equation that can then be
used to back-calculate concentrations for standard and QC
and, ultimately, unknown samples.

6.5.3 Calibration Using Standards

The recommended practice for performing concentration
calibration for LC-MS data is to use the lowest variance
model possible, taking into account the observed
heteroskedastic nature of the variance in the measurement,
which increases with signal intensity. This change in variance

with intensity was shown with both smoothing-based
deviation calculations and using continuous wavelet
transformations. As discussed throughout this chapter, the
underlying calibration function is not completely known, so it
has to be estimated. However, the number of factors that go
into both the instrument response and the expected
concentration are large enough to expect the function to be
smooth with low variance. Under perfect conditions, the
instrument response can be perfectly linear, requiring only a
weighted linear regression to obtain the slope and intercept
of the relationship. When using least squares to solve the
linear regression, the concentration is the independent
variable and is assumed to have no error. The instrument
response is the independent variable and is assumed to carry
all the experimental error.
Because of ion source saturation, detector saturation, or
other upper limits to detection, calibration curves often roll

off at the high-concentration end of the curve. If this is
observed in your experiments, the quadratic curve can be
used, adding curvature to the straight line equation while
keeping weighting and the closed-form solution offered by
the least squares method.
With any type of model, it is important to keep an eye on the
diagnostic metrics associated with the model. In the case of
lines and parabolas (first- and second-order polynomials), the
residuals should be examined to determine if there is a
pattern present. When low variance models are working
properly, the differences between the actual and predicted
values (the residuals) will be randomly scattered around
zero. Patterns indicate problems with either the model, the
fit, or the samples used.
Calibrations in LC-MS often use a weighted linear least
squares fit. To perform a weighted fit, you have to supply a
vector of weight values (one for each data point in the
dataset) to the lm() function. Many LC-MS calibrations use

 or weighting, which can be computed from the
concentration () and used in the fit.

cals <- result_table |>

 dplyr::filter(type=="cal") |>

 dplyr::select(c(conc, instrument_response))

use 1/x^2 weighting

conc_weights <- 1/cals$conc^2

m <- lm(instrument_response ~ conc,

weights=conc_weights, data=cals)

The lm() function uses the base R model formula to specify a
relationship between variables. In the model formula
instrument_response ~ conc, the ~ should be read as is
described by. The R model formula in the code above states
that the independent variable instrument_response is
described by conc. The default for model formulas is to
include a bias term, which in linear equations is usually
called the y-intercept. The model formula used here will be
parsed and create a standard equation for a line:

 where is instrument_response, (slope) is the
coefficient multiplied by conc and is the bias/y-intercept
which will also be computed by lm() using the matrix algebra
approach to obtain the least squares solution for the
coefficients (see the lm() help page for more detail).
The return value from lm() is a linear model. Information
about the fit performed can be best accessed through the
summary() function.

model_summary<-summary(m)

print(model_summary)

##

Call:

lm(formula = instrument_response ~ conc, data = cals,

weights = conc_weights)

##

Weighted Residuals:

1 2 3 4 5

6 7

-1.866e-05 4.423e-05 8.163e-06 -8.438e-05 -5.827e-05

2.680e-05 8.212e-05

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.403e-03 3.477e-04 27.05 1.29e-06 ***

conc 5.796e-03 2.988e-05 193.94 6.91e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

0.1 ' ' 1

##

Residual standard error: 6.379e-05 on 5 degrees of

freedom

Multiple R-squared: 0.9999, Adjusted R-squared:

0.9998

F-statistic: 3.761e+04 on 1 and 5 DF, p-value: 6.915e-

11

From the model, the fit looks to have performed very well.
The standard errors on the coefficients are low, and the
probability of them occurring by random (the Pr(>|t|) value)
is extremely low.
The predict() function can be used to get the predicted
instrument responses from the concentrations used in the fit.

cals$predicted <- as.numeric(predict(m))

Plotting the calibration and its residuals gives a hint about
the quality of the fit:

p_cals <- cals |>

 ggplot() +

 geom_point(aes(x=conc, y=instrument_response),

shape=1) +

 geom_line(aes(x=conc, y=predicted)) +

 ggtitle(label = "Linear Calibration",

 subtitle=parse(text=paste0(sprintf("~ R^2:

%0.4f",

model_summary$r.squared),

 " - ",

 sprintf("Adjusted ~

R^2: %0.4f",

model_summary$adj.r.squared)))) +

 xlab("Concentration") +

 ylab("Instrument Response (area ratio)") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

)

print(p_cals)

In most applications, goodness of fit scores based on the
coefficient of determination (R-squared and Adjusted R-
squared) are not considered particularly useful as metrics of
calibration quality. The concentration of the expected
instrument response is computed by inverting the calibration
equation (solving the equation for x) and then compared to
the known concentration (Figure 6.31). If the expected
values are within an acceptable tolerance range, then the

calibration is considered successful. It is, however, prudent
to plot the differences between the expected and known
instrument responses (the residuals) to ensure there is no
obvious pattern. It also helps when the number of calibrators
is low, and the calibration equation is more complex than a
line.

Figure 6.31 Linear calibration using weighting.

p_residuals <- cals |>

 ggplot() +

 geom_point(aes(x=conc, y=m$residuals), shape=1) +

 geom_hline(yintercept = 0) +

 ggtitle(label = "Residuals of Linear Calibration",

 subtitle=parse(text="~ 1/x^2 ~ Weighting"))

+

 xlab("Concentration") +

 ylab("Residual") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

)

print(p_residuals)

In the residual plot shown in Figure 6.32, there is a clear
pattern suggesting that the data used in the calibration has
some nonlinearity. Before changing the equation or the
weighting, however, I need to look at the calculated
concentrations of the calibrators to see if the nonlinearity
creates an error large enough to be significant for my
application.

Figure 6.32 Residuals from the linear fit of the

calibration data using weighting.

calc_conc <- (cals$instrument_response -

m$coefficients[1])/m$coefficients[2]

cals$calc_conc <- calc_conc

The percent difference between what the calibration will
assign and the known values:

conc_deviation <- 100*(1-cals$conc/cals$calc_conc)

cals$conc_deviation <- conc_deviation

cals |>

 dplyr::select(c(conc,calc_conc,conc_deviation))

A tibble: 7 x 3

conc calc_conc conc_deviation

<dbl> <dbl> <dbl>

1 5 4.98 -0.323

2 10 10.1 0.757

3 25 25.0 0.141

4 100 98.5 -1.48

5 250 247. -1.02

6 1000 1005. 0.460

7 2500 2535. 1.40

The calculated concentration error conc_deviation is less
than 1.5% for all concentrations, and because of the
weighting, it is extremely small for all the calibrators. For a
biological assay in which reproducible and accurate results
are demanded, this calibration is extremely good. At the time
of writing, the allowance for clinical diagnostic tests is 20% for
the lowest reported value (the lowest calibrator) and 15% for
the highest. For biomarker studies like the proteomics
example used in Chapter 5, the precision of repeated studies
needs to take clinical guidelines into consideration in order
to ensure the measurement can be reproduced in other labs
or eventually be used in clinical or pharmaceutical
applications.
For other applications of LC-MS, these tolerances, along with
the observation of nonlinearity in the residuals, might make
this calibration unacceptable. In those cases, an investigator
might view the nonlinear residuals as justifying the use of a
higher order polynomial to account for the evidence of
curvature. The next simplest model is a quadratic polynomial,
which adds a term to the equation. Since the coefficients
to be fit are pre-exponential (not in the exponent of any
variable), the model can be fit using the linear least squares
approach using lm().
The quadratic calibration curve introduces several new
issues that need to be addressed. First, the model formula

must be changed to include the squared concentration term.
To fit a quadratic model to the calibration data using the R
formula, the I() (also called AsIs) function prevents the
formula parser from interpreting the symbols +, -, *, and ^ as
formula operators so they are used as arithmetic operators.
Formula operators carry completely different meanings than
their arithmetic counterparts and are important for
describing various interactions between factors [47, 194].
The new formula instrument_response is described by (~), the
linear combination of concentration and concentration
squared: conc + I(conc^2).

q <- lm(instrument_response ~ conc + I(conc^2),

 weights=conc_weights, data=cals)

quadratic_model_summary<-summary(q)

print(quadratic_model_summary)

##

Call:

lm(formula = instrument_response ~ conc + I(conc^2),

data = cals,

weights = conc_weights)

##

Weighted Residuals:

1 2 3 4 5

6 7

-3.373e-05 5.794e-05 3.854e-05 -4.915e-05 -2.899e-05

1.845e-05 -3.064e-06

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.694e-03 2.999e-04 32.321 5.46e-06 ***

conc 5.752e-03 3.070e-05 187.341 4.87e-09 ***

I(conc^2) 5.134e-08 2.422e-08 2.119 0.101

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

0.1 ' ' 1

##

Residual standard error: 4.895e-05 on 4 degrees of

freedom

Multiple R-squared: 0.9999, Adjusted R-squared:

0.9999

F-statistic: 3.194e+04 on 2 and 4 DF, p-value: 3.92e-

09

The first thing to notice is that the p-value for the I(conc^2)
coefficient is above the traditional 5% chance of happening
by random. That doesn’t mean it’s not useful (it is), but that it
had a 10% chance of occurring at random. The small value
for the I(conc^2) coefficient makes sense, given how small
the deviation from linearity the first calibration appeared to
be as shown in Figure 6.32.

p_q_residuals <- cals |>

 ggplot() +

 geom_point(aes(x=conc, y=q$residuals), shape=1) +

 geom_hline(yintercept = 0) +

 ggtitle(label = "Residuals of A Quadratic

Calibration",

 subtitle=parse(text="~ 1/x^2 ~ Weighting"))

+

 xlab("Concentration") +

 ylab("Residual") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

)

print(p_q_residuals)

The importance of the small value for I(conc^2) can be seen
in the residuals shown in Figure 6.33. The residuals are more
randomly distributed compared to those in Figure 6.32, and
the magnitudes of the residuals are quite a bit smaller than
the residuals from the linear fit. This is exactly what is
expected when you increase the variance of a model but keep
the number of data points the same. Taken further,
increasing the complexity of the model can lead to overfitting

producing an equation that goes through every data point
perfectly, which produces residuals of zero. Overfitting is a
major concern in model fitting and will be discussed in more
detail in the next chapter when applying machine learning
models to mass spectrometry data.

(6.6)

Figure 6.33 Residuals from a quadratic fit of the

calibration data using weighting.

The next issue with quadratic fits is that the inversion of the
equation is the well-known quadratic equation. This equation
is the inverse of the quadratic polynomial and can be used to
solve for concentration from instrument response from the
polynomial coefficients.
The equation just fit is the quadratic polynomial shown in Eq.
(6.6):

where is the intercept, is the coefficient for
concentration (conc), and is the coefficient for the

(6.7)

concentration squared: I(conc^2). The inverse of the fit
equation is the general solution to quadratic equations from
basic algebra shown in Eq. (6.7).

Three well-known problems can arise with Eq. (6.7) when
applied to real physical systems. First, it is possible for this
equation to generate imaginary numbers if the term is
large. Second, the equation can produce two possible values
because of the in the numerator. Finally, the equation can
produce a negative concentration. A back calculation
program has to take these nonphysical solutions into
account, which means the concentration could be undefined

for a given instrument response. It also means that the
program will have to be able to choose between two real
solutions to return a single concentration from an instrument
response.
In chromatography calibration, only the first real positive
solution is physically meaningful. This physical constraint
makes it easier to write a program for the quadratic inverse.
However, the program may have to return an NA value if the
concentration is undefined (negative or complex). One
common occurrence in quadratic calibration is when the
quadratic equation is a parabola with an apex instrument
response lower than the highest possible instrument
response. In this case, any instrument response above the
apex will have no real solution. These are called no- intercept

results when they occur in practice.
First, I’ll show that the quadratic equation does indeed fit the
example data better than the linear equations.

inverse_quad <- function(y, a0, a1, a2) {

 x <- rep(NA, times=length(y))

 # bail out if there is going to be a divide by zero

error

 if(a2 != 0) {

 for(i in 1:length(x)) {

 A <- a1^2 + 4*a2*y[i]

 B <- 4*a0*a2

 # if the solution is real

 if(B <= A) {

 C <- sqrt(A-B)

 # if the solution is positive

 if(C >= -a1) {

 x[i] <- (-a1 + C)/(2*a2)

 }

 }

 }

 }

 x

}

quad_conc <- inverse_quad(cals$instrument_response,

 q$coefficients[1],

 q$coefficients[2],

 q$coefficients[3])

cals$quad_conc <- quad_conc

And now, I want to see the change in the deviations:

quad_deviation <- 100*(1-cals$conc/cals$quad_conc)

cals$quad_deviation <- quad_deviation

cals |>

 dplyr::select(c(conc, calc_conc, quad_conc,

conc_deviation, quad_deviation))

A tibble: 7 x 5

conc calc_conc quad_conc conc_deviation

quad_deviation

<dbl> <dbl> <dbl> <dbl>

<dbl>

1 5 4.98 4.97 -0.323

-0.590

2 10 10.1 10.1 0.757

0.997

3 25 25.0 25.2 0.141

0.665

4 100 98.5 99.1 -1.48

-0.860

5 250 247. 249. -1.02

-0.504

6 1000 1005. 1003. 0.460

0.314

7 2500 2535. 2499. 1.40

-0.0510

Notice that the quadratic calibration gives a uniformly
improved deviation, being fractionally worse than the linear
fit at the low concentrations but significantly better in the
upper four calibrators. This small check may give you a good
reason to use the quadratic equation, especially in this fit,
where the nonlinear term is small and positive. A positive
nonlinear term means that the curvature is positive, and
there will always be a single value for every instrument
response as they get larger.
However, in real experiments, there is a risk of a high-
concentration calibrator saturating the detector in some way
that calls for curvature in the calibration equation. As an
example, I’ll artificially change the highest calibrator to 10 to
represent a significant degree of saturation.

alt_cals <- result_table |>

 dplyr::filter(type=="cal") |>

 dplyr::select(c(conc, instrument_response))

alt_cals[7,]$instrument_response <- 10.0

alt_q <- lm(instrument_response ~ conc + I(conc^2),

 weights=conc_weights, data=alt_cals)

alt_quadratic_model_summary<-summary(alt_q)

print(alt_quadratic_model_summary)

##

Call:

lm(formula = instrument_response ~ conc + I(conc^2),

data = alt_cals,

weights = conc_weights)

##

Weighted Residuals:

1 2 3 4 5

6 7

3.944e-05 -1.610e-05 -1.147e-04 -1.903e-04 -6.456e-05

5.517e-04 -2.055e-04

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.183e-03 1.942e-03 4.214 0.0135 *

conc 5.985e-03 1.988e-04 30.103 7.25e-06 ***

I(conc^2) -7.131e-07 1.569e-07 -4.546 0.0104 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

0.1 ' ' 1

##

Residual standard error: 0.000317 on 4 degrees of

freedom

Multiple R-squared: 0.997, Adjusted R-squared:

0.9955

F-statistic: 667.7 on 2 and 4 DF, p-value: 8.918e-06

alt_quad_conc <-

inverse_quad(alt_cals$instrument_response,

 alt_q$coefficients[1],

 alt_q$coefficients[2],

 alt_q$coefficients[3])

alt_cals$alt_quad_conc <- alt_quad_conc

Calculating the predicted values is done in the same way as
above. For plotting the curved calibration line, I’m using the
model to predict a high-resolution version of the equation
between 0 and 2500 stepping by 1:

alt_cals$predicted <- as.numeric(predict(alt_q))

alt_cal_line <- as.numeric(predict(alt_q,

newdata=data.frame(conc=seq(0, 2500, 1))))

Now I can plot the calibrators and the curve:

p_alt_cals <- alt_cals |>

 ggplot() +

 geom_point(aes(x=conc, y=predicted), shape=19,

color=pal$red) +

 geom_point(aes(x=conc, y=instrument_response),

shape=1) +

 geom_line(data=data.frame(x=seq(0, 2500, 1),

y=alt_cal_line),

 aes(x=x,y=y), color=pal$red) +

 ggtitle(label = "Saturated Quadratic Calibration",

 subtitle=parse(text=paste0(

 sprintf("~ R^2: %0.4f",

alt_quadratic_model_summary$r.squared),

 " - ",

 sprintf("Adjusted ~ R^2:

%0.4f",

alt_quadratic_model_summary$adj.r.squared)))) +

 xlab("Concentration") +

 ylab("Instrument Response (area ratio)") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

)

print(p_alt_cals)

alt_quad_deviation <- 100*(1-

alt_cals$conc/alt_cals$alt_quad_conc)

alt_cals$alt_quad_deviation <- alt_quad_deviation

alt_cals |>

 dplyr::select(c(conc, alt_quad_conc,

alt_quad_deviation))

A tibble: 7 x 3

conc alt_quad_conc alt_quad_deviation

<dbl> <dbl> <dbl>

1 5 5.03 0.655

2 10 9.97 -0.270

3 25 24.5 -1.97

4 100 96.7 -3.37

5 250 247. -1.16

6 1000 1123. 11.0

7 2500 2300. -8.72

All of the calibrators are within the expected tolerance for a
clinical application and there is nothing obviously wrong with
the calibration plot shown in Figure 6.34. However, the
curvature (quadratic) term is slightly negative, which means
it is a downward-facing parabola that has an apex and will
give a no-intercept result for some instrument responses
above the apex. Choosing an instrument response that is only
slightly larger than the value from the experimental data
shows the effect:

high_response <- 18

inverse_quad(high_response,

 alt_q$coefficients[1],

 alt_q$coefficients[2],

 alt_q$coefficients[3])

[1] NA

Figure 6.34 An example of a calibration fit that rolls

over, which means there are instrument responses

that will have no intercept and produce no

concentration.

This is a classic no-intercept situation for a quadratic
calibration. In this case, it was caused by a slight saturation
in the high calibrator. For sample concentrations within the
5-2500 range specified by the calibrators, the calibration
functions acceptably, but for a sample with a concentration
higher than 2500, the equation gives no result. This is the
problem with polynomial calibrations: there are some simple
situations that can produce nonsensical results.
There are other function families that have a low variance
that could be used for calibration when curvature is present
in the data. One such family of functions is the Padé

(6.8)

(6.9)

approximates. The Padé approximates were developed in the
1890s by Henri Padé [195] to deal with certain problems
with truncating Taylor series expansions. However, the Padé
equation also approximates general power series [196],
which includes the polynomial series and the quadratic
equation specifically. The equation has been used in mass
spectrometry for calibrating isotope dilution measurements
[197].
The general form of the Padé approximate is a rational
function of the form:

The specific Padé approximate is specified by two numbers,
 and , which represent the orders of the polynomials in

the numerator and denominator. The approximate for the
quadratic is and or the Padé[1,1]. Replacing the
term with the term from the quadratic the Padé[1,1] takes
the form:

This equation has three parameters to fit, just like the
quadratic. However, it cannot be rearranged into a form that
meets all of the requirements of the least squares method to
determine the coefficients [197]. To compute accurate
coefficients, the Padé[1,1] equation has to be fit using a
nonlinear approach such as the one provided by R’s nls()
function. The default algorithm for the nls() function is the
Gauss–Newton method [198], which minimizes the sum of
squared errors iteratively, similar to Newton’s Method [196]
for fitting nonlinear equations. The Gauss–Newton can be
thought of as an extension of Newton’s method, which
doesn’t require the calculation of a second derivative [199].

To fit the Padé[1,1] to my example data, first, I put the
equation in a function:

pade_1_1 <- function(x, a0, a1, a2) {

 (a0 + a1*x)/(1 + a2*x)

}

Then, calculate the coefficients with nls(). When using nls()
or any iterative error-minimizing method, it is important to
provide a good starting guess for the parameters. Looking at
the form of the Padé[1,1] in Eq. (6.9), when the parameter
is 0, then the equation is the straight line shown in Figure
6.31. Since the linear fit was roughly correct, the and
found from lm() and setting seems like a good place to
start.

pade_model <- nls(instrument_response ~

pade_1_1(conc,a0,a1,a2), data=cals,

start=list(a0=model_summary$coefficients[1],

a1=model_summary$coefficients[2],

 a2=0.0),

 weights = conc_weights)

pade_summary <- summary(pade_model)

print(pade_summary)

##

Formula: instrument_response ~ pade_1_1(conc, a0, a1,

a2)

##

Parameters:

Estimate Std. Error t value Pr(>|t|)

a0 9.692e-03 2.993e-04 32.386 5.42e-06 ***

a1 5.752e-03 3.058e-05 188.121 4.79e-09 ***

a2 -8.722e-06 4.055e-06 -2.151 0.0979 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

0.1 ' ' 1

##

Residual standard error: 4.896e-05 on 4 degrees of

freedom

##

Number of iterations to convergence: 2

Achieved convergence tolerance: 3.46e-06

The curvature term for the Padé[1,1] () is negative as it
was in the quadratic fit. However, the shape of this equation
is not a parabola, so unlike the quadratic, it does not roll over
but rather continues increasing with an upper bound that
looks flatter and flatter as increases. This is a more realistic
image of how the response of a mass spectrometer detection
system might operate when compared to a parabola, which is
implausible beyond a certain saturation point.

cals$pade_predicted <- as.numeric(predict(pade_model))

pade_cal_line <- as.numeric(predict(pade_model,

newdata=data.frame(conc=seq(0, 2500, 1)))

)

p_pade_cals <- cals |>

 ggplot() +

 geom_point(aes(x=conc, y=pade_predicted), shape=19,

color=pal$red) +

 geom_point(aes(x=conc, y=instrument_response),

shape=1) +

 geom_line(data=data.frame(x=seq(0, 2500, 1),

y=pade_cal_line),

 aes(x=x,y=y), color=pal$red) +

 ggtitle(label = "Padé[1,1] Calibration",

 subtitle=

 sprintf("Residual standard error: %0.3e on

%d degrees of freedom",

 pade_summary$sigma,

pade_summary$df[2])) +

 xlab("Concentration") +

 ylab("Instrument Response (area ratio)") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

)

print(p_pade_cals)

Figure 6.35 looks quite reasonable, but as always, you need
to check the residuals:

Figure 6.35 An example of a Padé[1,1] calibration fit.

p_pade_residuals <- cals |>

 ggplot() +

 geom_point(aes(x=conc, y=pade_summary$residuals),

shape=1) +

 geom_hline(yintercept = 0) +

 ggtitle(label = "Residuals of Padé[1,1]

Calibration",

 subtitle=parse(text="~ 1/x^2 ~ Weighting"))

+

 xlab("Concentration") +

 ylab("Residual") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

)

print(p_pade_residuals)

The residuals in Figure 6.36 look randomly distributed and
exceedingly small.

(6.10)

Figure 6.36 Residuals from a Padé[1,1] fit of the

calibration data using weighting.

Another advantage of the Padé[1,1] equation is that its
inverse has only one possible value:

There is still the possibility of no result from the inverse.
First, if , then the denominator will be zero, and the
result will be Inf in R. Also, there are a couple of ways the
equation could return negative values.
And now I can put Eq. (6.10) into a function:

inverse_pade_1_1 <- function(y, a0, a1, a2) {

 x <- rep(NA, times=length(y))

 for(i in 1:length(x)) {

 # bail out if there will be a divide by zero

error

 if(a2*y[i] == a1) {

 next

 } else {

 r <- (a0 - y[i])/(a2*y[i]-a1)

 }

 # don't allow negative concentrations to be

returned

 if(r < 0) {

 next

 } else {

 x[i] <- r

 }

 }

 x

}

And use the inverse equation to obtain the back-calculated
concentrations for the calibrators:

pade_conc <- inverse_pade_1_1(cals$instrument_response,

pade_summary$coefficients[1],

pade_summary$coefficients[2],

pade_summary$coefficients[3])

cals$pade_conc <- pade_conc

It’s interesting to compare the deviations between the three
calibration methods:

pade_deviation <- 100*(1-cals$conc/cals$pade_conc)

cals$pade_deviation <- pade_deviation

cals |>

 dplyr::select(c(conc, conc_deviation,

quad_deviation, pade_deviation))

A tibble: 7 x 4

conc conc_deviation quad_deviation pade_deviation

<dbl> <dbl> <dbl> <dbl>

1 5 -0.323 -0.590 -0.588

2 10 0.757 0.997 0.996

3 25 0.141 0.665 0.662

4 100 -1.48 -0.860 -0.863

5 250 -1.02 -0.504 -0.504

6 1000 0.460 0.314 0.322

7 2500 1.40 -0.0510 -0.0535

The Padé[1,1] and the quadratic deviations are nearly
identical. However, as discussed above, the shape of the
Padé[1,1] equation does not represent a parabola, which
means that the equation will always return an intercept,
unlike the case of the saturated calibration shown in Figure
6.34.
I’ll show this using the same data I used to show the no-
intercept situation for the quadratic.

alt_pade_model <- nls(instrument_response ~

pade_1_1(conc,a0,a1,a2),

 data=alt_cals,

start=list(a0=model_summary$coefficients[1],

a1=model_summary$coefficients[2],

 a2=0.0),

 weights = conc_weights)

alt_pade_model_summary<-summary(alt_pade_model)

print(alt_pade_model_summary)

##

Formula: instrument_response ~ pade_1_1(conc, a0, a1,

a2)

##

Parameters:

Estimate Std. Error t value Pr(>|t|)

a0 8.155e-03 2.367e-03 3.446 0.0261 *

a1 5.993e-03 2.530e-04 23.690 1.88e-05 ***

a2 1.528e-04 5.329e-05 2.867 0.0456 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

0.1 ' ' 1

##

Residual standard error: 0.0003723 on 4 degrees of

freedom

##

Number of iterations to convergence: 6

Achieved convergence tolerance: 1.074e-06

alt_cals$pade_predicted <-

as.numeric(predict(alt_pade_model))

alt_pade_line <- as.numeric(predict(alt_pade_model,

newdata=data.frame(conc=seq(0, 2500, 1))))

Figure 6.37 shows how this calibration responds to the
saturated calibrator:

Figure 6.37 An example of a Padé[1,1] calibration fit

of a saturated calibrator.

p_alt_pade_cals <- alt_cals |>

 ggplot() +

 scale_y_continuous(n.breaks=10) +

 geom_point(aes(x=conc, y=pade_predicted), shape=19,

color=pal$red) +

 geom_point(aes(x=conc, y=instrument_response),

shape=1) +

 geom_line(data=data.frame(x=seq(0, 2500, 1),

y=alt_pade_line),

 aes(x=x,y=y), color=pal$red) +

 ggtitle(label = "Saturated Padé[1,1] Calibration",

 subtitle=

 sprintf("Residual standard error: %0.3e on

%d degrees of freedom",

 alt_pade_model_summary$sigma,

 alt_pade_model_summary$df[2])) +

 xlab("Concentration") +

 ylab("Instrument Response (area ratio)") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5,

size=16)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=11),

 axis.title=element_text(size = 14),

 legend.text = element_text(size = 11),

 legend.title = element_text(size = 14)

)

print(p_alt_pade_cals)

Calculate the concentrations:

alt_pade_conc <-

inverse_pade_1_1(alt_cals$instrument_response,

alt_pade_model_summary$coefficients[1],

alt_pade_model_summary$coefficients[2],

alt_pade_model_summary$coefficients[3])

alt_cals$alt_pade_conc <- alt_pade_conc

And then compute the deviations:

alt_pade_deviation <- 100*(1-

alt_cals$conc/alt_cals$alt_pade_conc)

alt_cals$alt_pade_deviation <- alt_pade_deviation

alt_cals |>

 dplyr::select(c(conc, alt_quad_deviation,

alt_pade_deviation))

A tibble: 7 x 3

conc alt_quad_deviation alt_pade_deviation

<dbl> <dbl> <dbl>

1 5 0.655 0.651

2 10 -0.270 -0.305

3 25 -1.97 -1.98

4 100 -3.37 -3.16

5 250 -1.16 -0.527

6 1000 11.0 12.4

7 2500 -8.72 -11.7

As with the quadratic calibration, the Padé[1,1] calibration
passes inside the 15% deviation limit for the top two
calibrators. You can see that the quadratic seems to have a
slightly higher variance at the high end, giving slightly lower
concentration deviations for the top two calibrators.
However, the back-calculated concentration for even an
exceptionally high instrument response will still return a real
value.

high_response <- 20

inverse_pade_1_1(high_response,

alt_pade_model_summary$coefficients[1],

alt_pade_model_summary$coefficients[2],

alt_pade_model_summary$coefficients[3])

[1] 6804.987

This result may be far outside the reporting range as defined
by the lower and upper calibrators. It is, however, a useful
number that can be used, for example, to simply convert to
>2500 or possibly used to estimate how much a sample needs
to be diluted to bring it into a reportable range. It would be
questionable to use the number as a reportable concentration

for the sample unless experiments are done to show that very
high concentrations don’t have detector saturation issues
that would have changed the curvature term in the equation (

). Finally, this real, positive value eliminates the need to
decide what to do with a no-intercept result.
I have shown three ways to perform concentration calibration
for a quantification experiment using LC-MS data: linear,
quadratic, and the Padé[1,1] approximate using both the lm()
and nls() functions. I have also shown how to gauge the
success of the calibration process by monitoring metrics of
the fit and checking for intercept problems. I also showed
how to back-calculate the concentrations of the calibrators to
check the accuracy of the fit.
The real test of the performance of a quantification assay is
the accuracy and precision of measured QC samples that also
have known concentrations. In the next section, I will show
how to use the calculated concentrations of QC samples to
confirm the calibration is performing correctly and the
measurement is under control.

6.6 Quality Control

There are many possible points of failure in liquid
chromatography with tandem mass spectrometry (LC–
MS/MS) quantitative assay. The LC column is performing a
chemical separation that is intended to introduce molecules
with identical chemical formulas and thus identical precursor

m/z values and identical fragment ions with identical product

m/z values (completely isobaric compounds) to the mass
spectrometry source at different times. The LC performs
other tasks, too, including allowing high-concentration
compounds that are very water soluble (proteins and sugars,
for example) to exit a reverse-phase column long before the
analyte of interest arrives at the mass spectrometer. In fact,
the early part of the LC run is normally diverted to waste to

prevent these compounds from contaminating the
instrument. However, there are other compounds that can
elute at nearly the same time as the analyte of interest and
either increase the ionization efficiency of the target analyte
(ion enhancement) or decrease the efficiency (ion
suppression). These events are usually normalized by the IS
compound. Any enhancement or suppression of the target
analyte will enhance or suppress the IS, and the area ratio
will remain the same. It is a good idea to monitor the
recovery of the IS across a single run to make sure that there
is no trend in the area of the IS peak.
Another important consideration is the performance of the
LC separation. If something were to shift in the separation
timing, a completely isobaric compound, which normally has
a different retention time than the target compound, can
appear in the expected time of the target, giving a false
measurement based on mistaken identity. A second product
ion (qualifier) is normally selected to act as a check on the
identity of the measured compound to address this
possibility.

6.6.1 Compound Identification with Ion Ratios

If a compound is isobaric in both the precursor and product
ions, it is very helpful to select a third product ion with a
different intensity response between isobaric compounds.
Since both the quantifier ion and the qualifier ion are derived
from the precursor molecule, it means that they must have
the same chromatographic timing. This is because the two
ions were formed in the mass spectrometer after they exited
the chromatography column. If chosen with care, the ratio of
the areas of the quantifier and qualifier ions will remain
constant independent of concentration. So if a molecule shifts
into the target molecule time range, which is capable of
generating the quantifying fragment ion, and its qualifier ion
area ratio does not match what was found in validation

experiments or even in the calibrator samples, the identity of
the molecule is uncertain, and its concentration cannot be
reported. This is especially important in medical and forensic
toxicology measurements, where the identity of the target
analyte must be as certain as possible. It is common in some
areas of testing for there to be two or more qualifying ions to
make certain the measured analyte has the expected identity.
The ratio of the quantifier peak area to the qualifier peak
area, often simply called the ion ratio, is a powerful tool for
determining compound identity. For the example data used in
the calibration example above, the expected ion ratio for this
batch can be estimated from the calibrators. Since the
relative intensities of fragment ions are related to the amount
of internal energy deposited into the precursor ion leading to
fragmentation, there are many instrumental factors that can
affect the ion ratio, and they are normally estimated for a
given contiguous run or batch, just as the calibration is
normally performed for every run or batch.

result_table$ion_ratio <-

 result_table$area_Quant / result_table$area_Qual

cals$ion_ratio <- result_table |>

 dplyr::filter(type=="cal") |>

 dplyr::pull(ion_ratio)

cals |>

 dplyr::select(c(conc, ion_ratio))

A tibble: 7 x 2

conc ion_ratio

<dbl> <dbl>

1 5 4.13

2 10 3.97

3 25 3.80

4 100 3.69

5 250 3.62

6 1000 3.67

7 2500 3.75

As expected, the area ratios of the quant and the qual are
nearly constant across the measurement interval. Sometimes,
there is more variability for low-concentration peaks, which
could affect what tolerance is allowed for unknown samples
at different concentrations.

sprintf("Ion Ratio - Mean: %0.4f SD: %0.4f",

 mean(cals$ion_ratio),

 sd(cals$ion_ratio))

[1] "Ion Ratio - Mean: 3.8040 SD: 0.1849"

Many laboratories use a tolerance limit on ion ratio of 20%
depending on the application, and sometimes a lab will
change its tolerance based on the relative areas of the quant
and the qual. In this assay, the tolerance in the calibrators is
less than 10% based on a 95% confidence interval (2SD).
This expected value can now be used on the QC samples to
confirm identity in addition to checking the concentrations.

6.6.2 Evaluation of Quality Control Samples

In the example data, there are four QC samples. Each has an
expected concentration but also has a standard deviation
based on replicate testing.

qc <- result_table |>

 dplyr::filter(type=="qc") |>

 dplyr::select(c(conc, instrument_response,

ion_ratio))

A quick look at the ion ratios shows that the QC samples are
well with expectations based on the calibrators:

qc$ion_ratio_deviation <- 100 * (1 -

mean(cals$ion_ratio)/qc$ion_ratio)

qc |>

 dplyr::select(c(conc, ion_ratio,

ion_ratio_deviation)) |>

 dplyr::arrange(conc)

A tibble: 4 x 3

conc ion_ratio ion_ratio_deviation

<dbl> <dbl> <dbl>

1 129. 3.71 -2.59

2 145. 3.89 2.15

3 602. 3.69 -2.99

4 1204 3.74 -1.62

All of the QC ion ratios are within 3% of the mean value from
the calibrators. That is an excellent indication that the QC
samples are the correct molecule and experienced the same
internal energy deposition as the calibrators, so the
estimated value for the ion ratio can be confidently applied to
the unknown sample.
A Student’s t-test can be used with the null hypothesis that
the two means (the QCs and Calibrators) are the same:

t.test(qc$ion_ratio, mu=mean(cals$ion_ratio),

conf.level = 0.95, alternative="two.sided")

##

One Sample t-test

##

data: qc$ion_ratio

t = -1.0315, df = 3, p-value = 0.3782

alternative hypothesis: true mean is not equal to

3.804022

95 percent confidence interval:

3.616882 3.899546

sample estimates:

mean of x

3.758214

The p-value for the test is so high that the alternative
hypothesis is rejected, and the ion ratios of the QCs can be
assumed to be drawn from the same population as the
calibrators.
Now, I can move on to checking the back-calculated values of
the QC samples. Besides the mean value of the different QC
sample concentrations, the standard deviations from multiple
runs are given along with dilution factors. The dilution
factors are needed to correct the back-calculated
concentrations to their predilution values, and the SD values
can be used to determine if a QC sample value is close
enough to the expected value to trust any unknown value
that will be reported.

sample_dilution <- c(2, 1, 1, 2)

conc_sd <- c(17.4, 9, 72.2, 72.3)

qc$conc_sd <- conc_sd

And now, calculate the concentrations for the QC sample
using all three calibrations and correct for the dilution of the
QC samples.

qc$lin_calc_conc <- ((qc$instrument_response -

m$coefficients[1]) /

 m$coefficients[2]) *

sample_dilution

qc$quad_calc_conc <-

inverse_quad(qc$instrument_response,

 q$coefficients[1],

 q$coefficients[2],

 q$coefficients[3]) *

sample_dilution

qc$pade_calc_conc <-

inverse_pade_1_1(qc$instrument_response,

pade_summary$coefficients[1],

pade_summary$coefficients[2],

pade_summary$coefficients[3]) * sample_dilution

Using QC concentration standard deviations, I can compute
the upper and lower bound for the calculated concentration
at the 2SD confidence interval:

qc$lower_conc <- qc$conc - 2 * qc$conc_sd

qc$upper_conc <- qc$conc + 2 * qc$conc_sd

Now compare the calculated concentrations with the ranges
expected from the mean and standard deviation of the QC
samples:

qc |>

 dplyr::select(c(conc, lower_conc, upper_conc,

 lin_calc_conc, quad_calc_conc,

pade_calc_conc)) |>

 dplyr::arrange(conc)

A tibble: 4 x 6

conc lower_conc upper_conc lin_calc_conc

quad_calc_conc pade_calc_conc

<dbl> <dbl> <dbl> <dbl>

<dbl> <dbl>

1 129. 111. 147. 152.

153. 153.

2 145. 110. 180 180.

181. 181.

3 602. 458. 747. 730.

733. 733.

4 1204 1060. 1348. 1314.

1309. 1309.

The results show that using the equations that fit the
calibrators best, the lowest two QCs are out of specification
for this batch. Using the linear equation, three out of the four
QCs pass. However, it is usually considered a problem when
all of the calculated concentrations for the QC samples are
above (or below) the stated concentration of the QC. This is
almost always a bad sign, and even though there are ways to
argue that this batch should pass, the QC samples suggest
that despite an excellent calibration, the unknowns are at
risk of being incorrectly calculated.

6.7 Summary

In this chapter, I have covered many important aspects of
working with chromatographic data from mass
spectrometers. While the examples focused on atmospheric
pressure ionization from LC–MS and MS/MS instruments, the
techniques can be applied to many types of mass
spectrometers. The methods can be most immediately
applied to gas chromatography systems where peak picking,
integration, filtering, and quality control are nearly identical.
The methods for computing baselines, picking peaks, and
noise reduction can also be directly applied to profile-mode

full-scan mass spectra collected by any type of mass
separator.
I also stressed the importance of quality control. There is a
serious problem with reproducibility in the application of
mass spectrometry to biological systems. This problem can
only be addressed by correctly assessing the quality of the
data being analyzed and by ensuring that quality controls, as
shown in this chapter and Chapter 5, are used to ensure that
results are not only statistically significant but have sufficient
effect size to be reproduced by other laboratories.

Chapter 7

Machine Learning in Mass

Spectrometry

7.1 Introduction

There are many ways to use machine learning in mass
spectrometry. In this chapter, I will introduce machine
learning ideas and methods that can help with data analysis
beyond basic statistical inference and tests. Since machine
learning is a vast field of study, I can only give a glimpse of
what is possible and describe the main framework used to
perform machine learning tasks in R. In this chapter, unlike
earlier sections, the primary source of machine learning
packages is a metapackage (like the tidyverse) called
tidymodels [200] available from Comprehensive R Archive
Network (CRAN).
I use the phrase machine learning to mean computing
(learning) the parameters of a model from data. You can
visually learn from data with your eyes, and as discussed in
Chapter 4, this is an essential step in data analysis. You can
also use statistics to learn from data. If your goal is to predict
a numerical value related to some new observation, the main
statistical tool is regression. Regression is thought of as a
mainstream statistical tool but is also an essential part of
machine learning. Tasks involving predicting the category or
class of a new observation is called classification, which,
while using some of the same tools as regression, is what
most people associate with the phrase machine learning.
Although there are many other types of machine learning
(e.g. reinforcement learning, and searching for optimum

paths or plans), this chapter will demonstrate algorithms for
performing regression and classification.
Another primary consideration for machine learning
algorithms is whether the data includes the actual value of
what is being predicted. In regression problems like
calibration, standards have a known quantity, and the
algorithm uses the true value of the outcome to calculate the
model’s parameters. Fitting parameters of a model based on
knowing the correct answer is called supervised learning.
The algorithm makes a prediction, and the prediction error
can be measured and used to correct the model’s behavior.
In classification, mistakes can be assessed in terms of the
probability of predicting the correct class of an observation,
which can be used in many ways. If a threshold probability is
defined for a correct class, then false positives and false
negatives are a strong indicator of performance. The
probabilities assigned to class outcomes can also be used in
more sophisticated ways, which will be covered in Section
7.6. Classifier algorithms can always be extended to
observations that come from many classes.
When the truth about an outcome (which class an
observation belongs to) is unknown, you are left with the
techniques of unsupervised learning. A measure of similarity
between observations determines class membership. Two
observations that are very similar in terms of their
descriptors are thought of as being “close” in the parameter
space. This idea can be used to create a small set of
predictors from a larger set, which causes similar
observations to be grouped even without knowing group
membership. Another way to group observations is by using
their similarity directly in one of many clustering algorithms.
In the tidyverse view of data organization, observations are
stored in rows of a table, and features are stored as columns.
In machine learning, the goal is to use past observations to
make a prediction about a new observation based on what

can be learned from the features (also called variables,
predictors, or dimensions) of existing observations using a
model. If the model can correctly make predictions, then the
way the model works can be used to understand some
aspects of the populations of possible observations. In this
way, machine learning and statistics are, again, highly
overlapped, because any set of observations will always
represent only a sample of the population. When generalizing
from a sample to a population, all of the tools of statistical
inference are needed to determine the reliability of the
generalization.
In statistical inference, distance measurements are central to
building models. Therefore, distance and the equivalent
concept of similarity play a critical role in machine learning.
For supervised learning, the distance between the predicted
value and the truth, often called the error or loss, is used to
correct model parameters. In unsupervised learning, the
distance between the descriptors of an observation, which is
equivalent to the similarity of two observations, is used to
place observations into groups or clusters.
Some basic issues arise when you try to measure distance
using features:

Numeric features may be represented in different units.
Features could have wildly different numerical scales,
which makes any simple idea of “distance” very hard to
calculate.
Features could be categorical and have no numerical
order, such as a color: “red,” “green,” or “blue.”
Some of the observations may be missing the values for
some features.

These and other aspects of features have to be evaluated and
addressed, based on the goals of the analysis, what machine

learning algorithms might be used, and how distance (or
error) is measured.
To use data to build models in a reliable and reproducible
way, it is always helpful to first organize your data into a tidy
format and understand any feature issues. Making data tidy
does not mean you must follow overly strict data organization
policies like keeping tables free from duplication, as one
would do for a relational database. The algorithms discussed
in this chapter are primarily used for tabular data, which is
the most common format for data obtained from mass
spectrometry. Unless your data are in rectangular tables, it
will be hard to ensure that you will get sensible results from
a machine learning algorithm. Further, once organized, it is
easier to assess the issues of scale, data type, and
completeness listed above.
Data preparation tasks can be complicated, repetitive, and
tedious to debug. Therefore, in this chapter, I will show how
to keep things organized using tidyverse packages and
address feature data preparation steps needed for
unsupervised and supervised learning using the tidymodels
framework [134, 201].

7.2 Tidymodels

The tidymodels metapackage is a collection of R packages
designed to work together to make it easier to build
reproducible machine learning pipelines. The tidymodels
packages work by composing pipelines using specifications
for data preparation, modeling, and testing. The tidymodels
pattern is to build a recipe for data preparation steps, a
model specification for machine learning algorithms and
hyperparameters, and then combine them into a workflow,
which is applied to data.

Like with the tidyverse, the tidymodels framework uses a
core set of packages to handle each phase of modeling [202]:

rsample provides the functions for data splitting, data
sampling, and resampling methods like cross-validation.
parsnip allows machine learning models to be specified
using a unified interface so that different models can be
handled in a consistent fashion.
recipes is an interface to preprocessing tools that
effectively brings data preparation inside the modeling
process, rather than something that is done before
modeling starts.
workflows organizes preprocessing, modeling, and post-
processing into a single operation that can be executed
reproducibly, on existing and new data sets.

Other packages like tune, yardstick, broom, and dials are
automatically loaded when you load the tidymodels package.
They each help with different modeling and model evaluation
tasks. There are also other specialized packages, like the
infer package used in Section 5.3.2 to perform hypothesis
testing and the tidyclust package used in Section 7.4.1.
Packages outside the tidymodels core set are not loaded
automatically, so must be installed and loaded individually.
The steps needed to prepare data for a particular analysis
can be organized into recipes and used whenever data of that
type is encountered. Models use a uniform interface, so
changing algorithms or model configurations simply requires
building a new model specification and inserting it into the
workflow. Programming in this way can initially feel awkward
because sometimes the objects created by a step are
complex, deeply nested lists. However, like using pipes (|>)
and the functional programming approach, with a little
practice, the workflow concept of tidymodels will make your
modeling easier to write and read and easier to get right and

keep correct, even as things change with the data you are
analyzing.

7.3 Feature Conditioning, Engineering,

and Selection

I briefly mentioned that features often need to be prepared in
some way before models can be fit and tested. Three main
tasks are performed on features before modeling: feature
conditioning, feature engineering, and, in some cases,
feature selection. This section will be a brief introduction to a
deep subject. More technical details can be found in Kuhn
and Johnson’s excellent text, Feature Engineering and

Selection [203].
Feature conditioning cleans up data before it is used in a
computation. Tasks include dealing with missing values,
scaling data from widely different value ranges or units,
centering the data so that the mean is zero, and other
conditioning, such as log transformations. Feature
engineering, or extractions, usually refers to creating new
features from existing features provided in the data. In
Chapter 4, the feature ion_ratio was used in Section 4.2 to
analyze codeine and oxycodone data. If ion_ratio had not
been in the data file provided, it could be computed as a
feature engineering step from the quantifier and qualifier
peak areas. In the opioids_peaks.csv file, there is a feature
called response, computed as quant_area/IS_area. The IS
areas are not given in the file, but using IS_area =
quant_area/response, the IS value could be computed as a
new feature and used in further analysis. In Chapter 6, many
new features of a chromatography trace were computed,
ranging from peak features to the frequency content of peaks
and traces. Mass spectrometry experiments often involve
collecting many features from relatively few observations.
The number of features could grow when the measured

features are combined with any engineered features. A large
number of features and a few observations create a situation
where the number of features must be reduced to fit a model.
Highly correlated, noisy, or low information content features
can often be removed from the data set to improve model
performance.

7.3.1 Conditioning Data

In this section, I will use data from an assay that quantified
benzodiazepines. The data set in benzos_small_1000.csv is
similar to the opioid data used in Chapter 4. As expected,
there are clear indications that some features are on
different scales.

benzos_msdata <- read_csv(file.path("data",

"benzos_small_1000.csv")) |>

 mutate_if(is.character, as.factor)

As will be discussed more in Section 7.3.2.2, after the data is
read, columns containing strings are converted to factors

using the mutate_if(is.character, as.factor) statement.

summary(benzos_msdata)

index response peakAreaQuant

peakRTQuant

Min. : 1.0 Min. : 0.00004 Min. : 10.1

Min. :3.176

1st Qu.: 250.8 1st Qu.: 0.00158 1st Qu.: 18.9

1st Qu.:3.763

Median : 500.5 Median : 0.00450 Median : 46.0

Median :4.071

Mean : 500.5 Mean : 1.54611 Mean : 14723.8

Mean :3.984

3rd Qu.: 750.2 3rd Qu.: 0.35718 3rd Qu.: 3526.9

3rd Qu.:4.194

Max. :1000.0 Max. :186.85807 Max. :1763875.7

Max. :4.278

peakAreaQual peakRTQual ionRatio

compound

Min. : 10 Min. :3.266 Min. : 0.002014

lorazepam:412

1st Qu.: 83 1st Qu.:3.770 1st Qu.: 0.166986

temazepam:588

Median : 320 Median :4.071 Median : 0.252648

Mean : 67506 Mean :3.981 Mean : 0.453542

3rd Qu.: 9536 3rd Qu.:4.185 3rd Qu.: 0.551159

Max. :8113087 Max. :4.278 Max. :10.001550

Retention times (qual_rt, quant_rt) are in minutes, ranging
from about 3.3 to 4.3, and area values have units of ion
counts and range from about 10 to 8e6. Additionally, all of
these values come from wildly different distributions.

benzos_recipe <- recipe(compound ~ ., data =

benzos_msdata) |>

 step_rm(index) |>

 step_log(all_numeric()) |>

 step_normalize(all_numeric())

This is a template for the recipe() function. The recipe is
constructed from the benzos_msdata tibble and associates the
outcome to the compound column and the predictors to all the
other columns. The recipe() function only creates a
specification for data preparation. It only uses the data=
parameter to get the outcome and predictor names for later
use. In this data, there is a column called index, which is
simply a row number. Since the data are sorted by compound,
this column must be removed. The step_rm() function
removes unwanted columns from the data. Next, I perform a
log transformation to get all the data into approximately the
same range of values using step_log() and specify that this
should be done to all numeric features using the selector
function all_numeric(). Finally, the step_normalize() function

divides all of the values in a column by the variance of the
column and subtracts the mean value. Once created, the
benzos_recipe object can be used on any data with the same
outcomes and predictors as the original data specified. At
this point, no actual conditioning has occurred. It will be
applied in the appropriate way later to training sets, test
sets, or during cross-validation.
In supervised learning, performing simple numeric
transformations like log() on the data in advance is not a
problem. However, when it comes time to split the data into a
training set and a test set, or use cross-validation, care must
be taken. It is critical to perform normalization and centering
transformations on each group separately to prevent
information from the test data from leaking into the training
data. If information about the test set or cross-validation fold
is allowed to leak into the training data, the result of the test
will overestimate the performance of the model and lead to
overfitting and a failure to generalize. The recipe() function
makes it easy to condition the data and keep the training and
test sets and cross-validation folds isolated automatically.
The benzos_recipe now contains all of the data and all of the
instructions on how to condition it:

benzos_recipe

##

-- Recipe--

##

-- Inputs

Number of variables by role

outcome: 1

predictor: 7

##

-- Operations

* Variables removed: index

* Log transformation on: all_numeric()

* Centering and scaling for: all_numeric()

The prep() function is used to estimate all of the necessary
statistics to perform all of the preprocessing steps in a
recipe. To normalize, for example, the mean and standard
deviation are computed and used on future datasets. When
used for general preparation, prep() uses all the data from
the recipe to perform these calculations. This allows these
statistics to be used on future data sets. In a workflow, the
calculations done by prep() are performed behind the scenes
on the training part of the data so the steps can be applied to
test data (or new data). It would be a mistake to use prep()
on the full dataset in supervised learning before the train-test
split or before cross-validation, because it would cause the
information leakage mentioned above. In unsupervised
learning, there is no label or test set, so prep() is used in
combination with bake() using the entire dataset.

benzos_prep <- prep(benzos_recipe)

Once all of the statistics needed to create a dataset are
computed, the parameters are used by the bake() function to
create a new, preprocessed dataset. The new_data parameter
is set to NULL when using a prepped recipe on the original
data. To apply a recipe to new data, set the new_data
parameter to the name of the new dataset. Like prep(), when
a recipe is used in a workflow, the data creation performed by
bake() is performed on the training data or the cross-
validation training folds. The prep() and bake() functions are,
however, very useful when performing unsupervised learning
where there is no label or information leakage possible.

benzos_data <- bake(benzos_prep, new_data = NULL)

The output of bake() is a tibble that has been conditioned
using prep() on the recipe specification:

summary(benzos_data)

response peakAreaQuant peakRTQuant

peakAreaQual

Min. :-1.9904 Min. :-1.0541 Min. :-3.5091

Min. :-1.5300

1st Qu.:-0.8057 1st Qu.:-0.8473 1st Qu.:-0.8606

1st Qu.:-0.8219

Median :-0.4733 Median :-0.5519 Median : 0.3668

Median :-0.3602

Mean : 0.0000 Mean : 0.0000 Mean : 0.0000

Mean : 0.0000

3rd Qu.: 0.9159 3rd Qu.: 0.8851 3rd Qu.: 0.8333

3rd Qu.: 0.7980

Max. : 2.9042 Max. : 2.9435 Max. : 1.1411

Max. : 3.0996

peakRTQual ionRatio compound

Min. :-3.0648 Min. :-4.90612 lorazepam:412

1st Qu.:-0.8210 1st Qu.:-0.46429 temazepam:588

Median : 0.3802 Median :-0.04797

Mean : 0.0000 Mean : 0.00000

3rd Qu.: 0.8142 3rd Qu.: 0.73628

Max. : 1.1561 Max. : 3.65044

Checking the normalization shows that while the data are not
necessarily expected to follow a normal distribution, the
mean of each column is 0 and the standard deviation is 1.

mean(benzos_data$peakRTQuant)

[1] -3.841372e-14

sd(benzos_data$peakRTQuant)

[1] 1

I’ll cover missing value treatment in more detail later.
However, the simplest way to remove NA values is to add
step_naomit() to the recipe.

7.3.2 Feature Engineering

Most of the chapters in this book deal with computing
features of high performance liquid chromatography–mass
spectrometry (HPLC-MS) and multiple-stage mass
spectrometry (MS/MS) data based on physical and chemical
characteristics. All of those characteristics can become
features for machine learning and fall into the class of
feature engineering. All predictors shown in the benzo_msdata
data were computed from a raw chromatographic trace as
discussed in Chapter 6. Almost all the feature engineering in
mass spectrometry happens before the data are assembled
for a machine learning task. There are a few steps outside
the realm of conditioning that are commonly used beyond the
extraction and creation of features from raw data that are
discussed throughout this book.

7.3.2.1 Missing Value Imputation

As mentioned above, many machine learning algorithms
cannot handle missing values, and many times, simply
removing observations with a missing predictor value might
remove too much data. The alternative is to replace the
missing value with an imputed value. Data imputation was
done using statistical methods for the data values below the
limit of quantitation in Chapter 6 in Section 6.3.2. In that
example, missing values were imputed from the estimated
distribution of the variable. Imputation can also replace
missing values by finding similar observations based on non-

missing features and then typically taking the average of
those values to replace the missing value. Imputation using
related observations is a form of unsupervised learning called
K-nearest neighbors (KNN). To demonstrate the imputation, I
will randomly remove 10% of the peakAreaQual predictor in
the benzo_msdata data and use step_impute_knn() to replace it
and evaluate how similar the replacements are.

Since sample() uses a random number make sure to

always generate the

same sequence of random numbers for this example

set.seed(42)

missing_peaks <- sample(1:1000, size=100)

missing_qual_peaks <-

benzos_msdata$peakAreaQual[missing_peaks]

benzos_msdata_na <- benzos_msdata

benzos_msdata_na$peakAreaQual[missing_peaks] <- NA

vis_miss(benzos_msdata_na)

The values for the first 10 peaks selected to be treated as
missing (Figure 7.1):

Figure 7.1 Visualization of missing values in a data

set.

benzos_msdata$peakAreaQual[missing_peaks[1:10]]

[1] 28245.20249 244.57632 100.27751

23.40354 519.59353

[6] 15.94680 75.31189 347807.91822

110.18554 93.22363

Now, use imputation to replace them, prep the recipe, and
then create a new tibble called benzo_impute from the data
given in the recipe() function by setting new_data=NULL in the
‘bake() function:

benzos_impute <- recipe(compound ~ ., data =

benzos_msdata_na) |>

 step_impute_knn(peakAreaQual) |>

 prep() |>

 bake(new_data=NULL)

Now compare the imputed values to the original values:

benzos_impute$peakAreaQual[missing_peaks[1:10]]

[1] 34150.89530 764.59945 55.28039 4457.83311

2013.99192 2199.29993

[7] 4814.76347 92500.02977 1271.97416 631.84359

The actual values imputed for the first 10 missing values are
not particularly close to the original values but compare the
mean and standard deviation of the original data to the
imputed data:

mean(benzos_msdata$peakAreaQual)

[1] 67506.03

sd(benzos_msdata$peakAreaQual)

[1] 427303.5

The mean and standard deviation of the imputed feature:

mean(benzos_impute$peakAreaQual)

[1] 66760.1

sd(benzos_impute$peakAreaQual)

[1] 426245.8

With missing values, the mean() and sd() functions won’t
work, which is true for many calculations performed in
machine learning. Distance or error measurements often
simply have no way of handling a value that is missing. The
mean and standard deviation after KNN imputation are close
to the original value for that feature. This saved 10% of the
data from being thrown away. As mentioned before, the
recipe package has other imputation functions, so if KNN
doesn’t make sense for your data, you can try others and see
how they work. Remember to use imputation in a recipe so
that the parameters needed for imputation are computed on
the training set and then applied to the test set and new data
to prevent information leakage.
The tidymodels package recipe includes many other
imputation methods, and you should determine which
approach best fits your application.

7.3.2.2 Encoding Categorical Variables

Another important feature engineering step is dealing with
categorical variables used as predictors. One approach is to
convert categorical features to factors. When predictors are
converted into factors, they are given a numeric value, which
is often all that is needed for simple machine learning
algorithms.

set.seed(2112)

compound_class <- c(rep("opioid",5), rep("benzo",5),

rep("SSRI",5), rep("NSAID",5))

compound_present <- sample(rep(0:1,100), 20)

drug_list <- tibble(present=compound_present,

class=compound_class) |>

 mutate_if(is.character, as.factor)

as.numeric(drug_list$class[drug_list$class=="opioid"])

[1] 3 3 3 3 3

as.numeric(drug_list$class[drug_list$class=="benzo"])

[1] 1 1 1 1 1

Using the mutate_if() function with the is.character selector
and as.factor() function, converts all character type columns
to factors.
The compound_class “opioid” was assigned a numeric value
of 3, while the compound_class “benzo” was assigned a value
of 1. In many algorithms, this will be interpreted as “opioid”
having a larger value in calculations than “benzo” when there
is no order to the feature compound_class.
Using the function step_string2factor() in a recipe is not

recommended because of how levels are assigned when the
recipe is applied to training and test data sets and cross-
validation folds. The full set of possible levels needs to be
known by the recipe so they can be assigned correct test
data. According to the documentation for the recipes
package, except for special cases, factors should be assigned
prior to using the data with any tidymodels.

The implied ordering of a numeric factor value and its scale
compared to other variables can create problems for some
machine learning algorithms. A common approach to
preventing these problems is to create dummy variables

using a technique called one-hot encoding. In a recipe, one-
hot encoding is performed using the step_dummy() function.

drug_list_dummy <- recipe(present ~ ., data =

drug_list) |>

 step_dummy(all_nominal_predictors(), one_hot =

TRUE) |>

 prep() |>

 bake(new_data=NULL)

drug_list_dummy

A tibble: 20 x 5

present class_benzo class_NSAID class_opioid

class_SSRI

<int> <dbl> <dbl> <dbl>

<dbl>

1 1 0 0 1

0

2 1 0 0 1

0

3 1 0 0 1

0

4 0 0 0 1

0

5 0 0 0 1

0

6 1 1 0 0

0

7 0 1 0 0

0

8 0 1 0 0

0

9 0 1 0 0

0

10 1 1 0 0

0

11 0 0 0 0

1

12 1 0 0 0

1

13 0 0 0 0

1

14 1 0 0 0

1

15 1 0 0 0

1

16 0 0 1 0

0

17 1 0 1 0

0

18 1 0 1 0

0

19 1 0 1 0

0

20 1 0 1 0

0

When using one-hot encoding, each categorical value in the
class column is converted into a column of its own. When the
value of class is “opioid,” a value of 1 is put in the column,
and all the other dummy variables are set to 0. No implied
order exists to the class values when one-hot encoding is
used.
Some care should be taken when using step_dummy(). The
default parameter for one_hot is FALSE, which will compute
four dummy variables rather than five. Dummy encoding by
leaving one categorical value out is the default because some
algorithms (including least squares regression) have
numerical problems in the underlying matrix algebra when
all the dummy columns add up 1. Leaving out a categorical
variable doesn’t lose any information because if all the
dummy variables are 0, it indicates that the observation
contains the left-out categorical value [134].

7.3.2.3 Principal Component Analysis

Principal component analysis (PCA) generates new features
by using a linear combination of existing features to
transform the data to a new coordinate system. The
transformation is performed so that the new dimensions
(principal components) capture the most variation in the
data. PCA is a general feature engineering process that is
used to reduce the number of dimensions in a dataset
independent of the domain-specific feature engineering
discussed in earlier chapters.
PCA is described in many places, but the book, An

Introduction to Statistical Learning: With Applications in R

[204] gives one of the clearest explanations available with
examples given in R. The essential idea is that the first

principal component is calculated by multiplying each feature
value by a coefficient and then adding them together. The
coefficients are calculated so that the linear combination has
the largest variance. A second component can be calculated
with the highest variance of all linear combinations
uncorrelated with the first component. These create
orthogonal dimensions, which allow any pair of principal
components to be plotted as a 2D plot. The values of the
coefficients are called loadings and can be used to show how
much variance is captured by each component. In R, the
function prcomp() can be used to perform PCA. To avoid
information leakage, discussed throughout this chapter, the
step_pca() function can be used in a recipe so that the
method of combining features is established on the training
data and applied to the test data and new data.
To show how to perform basic PCA, I will use data from the
2023 paper by Yang et al. L-leucine increases the sensitivity

of drug-resistant Salmonella to sarafloxacin by stimulating

central carbon metabolism and increasing intracellular

reactive oxygen species level [205]. The study performed
positive and negative ion liquid chromatography with tandem

mass spectrometry (LC-MS/MS) on samples of Salmonella

typhimurium. A sarafloxacin-resistant strain (SAR-R) and a
nonresistant strain (SAR-S) were analyzed in replicate (six
biological replicates from each strain). The results were
deposited in the Metabolights data repository as MTBLS7711
for the positive ion LC-MS/MS analysis and MTBLS7713 for the
negative ion analysis.
This study used an AB SCIEX TripleTOF 6600, a high-
resolution MS/MS system that uses a time-of-flight mass
analyzer as the second mass analyzer. In the Metabolights
repository, the raw data are available as mzML files. The study
is described using the Investigation-study-assay (ISA) format
described in Chapter 3, which includes the metabolite
identification information (peak areas and chemical
identification) using the metabolite assignment file (MAF)
format mentioned in Section 3.4.

read the positive ion metabolite profile ISA file and

clean it up

sal_pos <- read_tsv(file.path("data","MTBLS7711",

 "m_MTBLS7711_LC-

MS_positive_hilic_metabolite_profiling_v2_maf.tsv"))

Like in previous chapters, the first step is to organize the
data according to Tidy Data principles. For the MAF format,
this requires a little pivot gymnastics. Since the columns
contain the peak areas of metabolites, they have chemical
names that are mostly not syntactic. However, all this table
requires is that the column names are unique. For most
machine learning applications, the observations need the
same label, so after getting the table correctly formatted, the
observation names are changed to simply reflect group
membership. In this example, there are three groups: QC, SAR-
R, and SAR-S.

sal_pos_dt <- pivot_longer(sal_pos, cols =

ends_with("POS")) |>

 select(metabolite_identification, name,

value) |>

 pivot_wider(names_from =

metabolite_identification,

 values_from = value,

names_vary = "slowest",

 names_repair = "unique")

sal_pos_dt$name <- c("QC","QC","QC","QC",

 "SAR-R","SAR-R","SAR-R","SAR-

R","SAR-R","SAR-R",

 "SAR-S","SAR-S","SAR-S","SAR-

S","SAR-S","SAR-S")

Principal component analysis benefits from variable
normalization. So, I will create a recipe() to normalize the
data for use in PCA:

sal_pos_rec <- recipe(name ~ ., data = sal_pos_dt) |>

 step_normalize(all_numeric())

Then use prep() and bake() to get the normalized data table:

sal_pos_data <- sal_pos_rec |>

 prep() |>

 bake(new_data = NULL)

To perform PCA on the normalized data, I drop the label name
and call prcomp() from the stats base package. Since the data
is already centered, this process can be skipped
(center=FALSE).

pca_sal <- sal_pos_data |>

 select(-name) |>

 prcomp(center=FALSE)

Throughout this book, I have used ggplot() directly to
customize plots for mass spectrometry. The autoplot()
function gives sensible output for most machine learning
plots. Since the plot produced by autoplot() is a ggplot()
object, you can customize it by adding additional layers
(Figure 7.2).

Figure 7.2 First and second principal components for

the SAR positive ion samples.

pca_plot <- autoplot(pca_sal, data=sal_pos_data,

color="name") +

 theme_bw() +

 theme(plot.title = element_text(hjust = 0.5,

size=12)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 theme(

 axis.text=element_text(size=8),

 axis.title=element_text(size = 10)

) +

 ggtitle(label= "PCA of SAR Positive Ion Samples")

print(pca_plot)

The fviz_eig() function from the factoextra package can be
used to see the variance explained by each principal
component. The percentage of the explained variance
attributed to each principle component is also called loading.
The name scree plot is used because loading percentages
tend to start high and then level off quickly, so the plots look
like the loose rock debris (scree) that accumulates at the
bottom of a mountain (Figure 7.3).

Figure 7.3 Plot of the top 10 principal components

and their percent of variance explained.

fviz_eig(pca_sal)

7.3.3 Feature Selection

There are many reasons to use a subset of the features
available rather than all of them when working with models.
One reason that occurs often in mass spectrometry data is
that there are too few observations and too many features
describing them. In this case, any statistical model relating
the outcome to the features runs into the common linear
algebra problem of having too many variables and
insufficient equations, which requires dimensionality

reduction. Some other reasons for performing feature
selection are that some features are highly correlated with
each other and that some features have low information
content. In many cases, building models using a subset of
features can help produce better models.
Regardless of the feature selection method used, it is very
important to understand that feature selection is part of
modeling, not part of data preparation. Improper feature
selection can lead to label leakage, which will be discussed
more in Section 7.6. Briefly, using a recipe to perform feature
selection reduces the risk of label leakage by performing the
feature selection only on the training set or cross-validation
training fold. Splitting data into training and testing sets will
be covered in more detail in Section 7.6.2.
Feature selection can be performed in either an unsupervised
or supervised manner. Examples of unsupervised feature
selection are removing features with missing values,
removing low-variance features, or selecting performing PCA
and keeping only the components above some threshold of
variance representation. Supervised feature selection uses
the relationship with the label to identify the most important
features. As mentioned, this must be done with care, and the
best way is to use the tidymodels recipe approach to make
sure that the features are selected from the training set and
then applied to the test set and new data.

To perform supervised feature selection using the recipes()
function, a specialized package has to be installed from
GitHub as was done in Section 5.2.4. The colino package
[206] is the latest version of recipeseclectors that performs
feature selection based on a ranking of a metric. To install
colino, use the command
remotes::install_github('stevenpawley/colino').
Going back to the benzodiazepines data, I will build a recipe
to perform both supervised feature selection. The
step_select_linear() function is told to use the magnitude of
the linear relationship between the outcome (label) and all
the predictors (using the all_predictors() selector function)
and select the top four:

benzos_select_recipe <- recipe(compound ~ ., data =

benzos_msdata) |>

 step_rm(index) |>

 step_log(all_numeric()) |>

 step_normalize(all_numeric()) |>

 step_select_linear(all_predictors(),

outcome="compound", top_p=4)

benzos_select_recipe

##

-- Recipe ---

##

-- Inputs

Number of variables by role

outcome: 1

predictor: 7

##

-- Operations

* Variables removed: index

* Log transformation on: all_numeric()

* Centering and scaling for: all_numeric()

Variable importance feature selection

The recipe output shows that it will be operating on seven
predictors and one outcome:

benzos_select <- benzos_select_recipe |>

 prep() |>

 bake(new_data=NULL)

summary(benzos_select)

peakAreaQuant peakRTQuant peakAreaQual

ionRatio

Min. :-1.0541 Min. :-3.5091 Min. :-1.5300

Min. :-4.90612

1st Qu.:-0.8473 1st Qu.:-0.8606 1st Qu.:-0.8219

1st Qu.:-0.46429

Median :-0.5519 Median : 0.3668 Median :-0.3602

Median :-0.04797

Mean : 0.0000 Mean : 0.0000 Mean : 0.0000

Mean : 0.00000

3rd Qu.: 0.8851 3rd Qu.: 0.8333 3rd Qu.: 0.7980

3rd Qu.: 0.73628

Max. : 2.9435 Max. : 1.1411 Max. : 3.0996

Max. : 3.65044

compound

lorazepam:412

temazepam:588

##

##

##

Applying the recipe to all of the data shows of the original 6
columns, 4 were selected according to the top_p=4 parameter
to the step_select_linear() function.
When used correctly, both unsupervised and supervised
feature selection can produce models with very good
performance by reducing the number of model parameters
and lowering the variance of the model. The importance of
low-variance models will be discussed more in Section 7.6.1.

7.4 Unsupervised Learning

Unsupervised learning is often used in mass spectrometry to
aid with exploratory data analysis (see Chapter 4). It is also
the only option available when working with data that have
no label or class. These algorithms use measures of distance
to group-related observations. This can be done to show how
data clusters, either in general or hierarchically. Clustering
methods often depend on the use of PCA discussed above as
the features to be grouped. The concept of related
observations can also be used without dimensionality
reduction for spectral comparison. For example, spectral
library searching can be performed by ordering library
spectra based on their similarity to a spectrum from an
unknown compound.

7.4.1 Clustering

Clustering is the process of grouping observations based on
how similar they are. Most clustering algorithms use
Euclidian distance to determine how similar two observations
are. Often, this distance is calculated in a reduced-
dimensional space, like the principal components computed
from an observation. The algorithm is simple to understand:
each observation is placed in one of a specified number of
clusters, where the within-cluster variation is minimized. The
variation minimization step is framed as an optimization task,
and many measures of variation and optimization methods
are available. K-means clustering is a classic method [207]
available in R as kmeans() from the stats package. The
default algorithm for the optimization step is the Hartigan–
Wong algorithm [208]. All K-means algorithms start by
randomly assigning an observation to a cluster and then
iterating until the conditions are met for convergence.
Because of randomization, multiple runs on the same data
can give different results. To get the same results from

multiple runs, you can use the set.seed() function to ensure
the random numbers generated are the same for each run.
Processing the data with different random seeds and
combining the results can be helpful. The kmeans() function
has a parameter nstart, which, if used, controls how many
random sets are chosen and combined.
The tidyclust package also includes a k_means() function for
use in parsnip models. The k_means() function lets you use
set_engine in the parsnip model specification. The default
package is stats, which results in the model using the
kmeans() function. See the tidyclust package documentation
for more details [209]. I will use the kmeans() function on the
data from the Salmonella typhimurium study [205] used in
Section 7.3.2.3:

set.seed(421)

kmeans_sal <- sal_pos_data |>

 select(-name) |>

 kmeans(algorithm = "Hartigan-Wong", centers=3)

Given that there were three groups (SAR-R, SAR-S, and QC),
I chose three centers or centroids to see how well the K-
means solution matched the intuition from Figure 7.2.

km_plot <-autoplot(kmeans_sal,

 data=sal_pos_data,

 frame=TRUE, frame.type='norm') +

 theme_bw() +

 theme(plot.title = element_text(hjust = 0.5,

size=12)) +

 theme(plot.subtitle = element_text(hjust =

0.5)) +

 theme(

 axis.text=element_text(size=8),

 axis.title=element_text(size = 10)

) +

 ggtitle(label= "K-Means Clustering SAR Positive

Ion Samples")

print(km_plot)

The centers shown do a good job of finding reasonable
clusters (Figure 7.4). A new observation from one of the
three groups is expected to fall in one of the regions defined
by the 95% confidence interval of the two-dimensional
normal distributions determined by each group’s variance in
PC1 and PC2. The autoplot() function calls ggbiplot()
function automatically to generate the cluster plot object.
The ggbiplot() function defaults to a 95% confidence
interval, which can be changed by setting the frame.level
argument to the desired level.

Figure 7.4 K-means clustering of the positive ion

samples for the SAR-R, SAR-S, and QC samples.

7.4.2 Hierarchical Clustering

One disadvantage of the K-means clustering approach is that
it requires the specification of the number of clusters, which
is often unknown. Hierarchical clustering (HC) does not
require telling the algorithm the number of clusters in
advance. In mass spectrometry analysis, HC often appears as
a combination of one or two tree-based representations of the
cluster assignments, or dendrograms, combined with a
heatmap representing the data associated with the
observations.

Using the data from MTBLS7711 (positive ions) and MTBLS7713
(negative ions), I will show how to perform an HC analysis
and avoid a common error. First, I will combine the positive
and negative ion profiling data into a single data structure.
Here, I load the negative ion data and condition it the same
way I did the positive ion data earlier in Section 7.3.2.3.

sal_neg <- read_tsv(file.path("data","MTBLS7713",

 "m_MTBLS7713_LC-

MS_negative_hilic_metabolite_profiling_v2_maf.tsv"))

sal_neg_dt <- pivot_longer(sal_neg, cols =

ends_with("NEG")) |>

 select(metabolite_identification, name, value) |>

 pivot_wider(names_from = metabolite_identification,

 values_from = value, names_vary =

"slowest",

 names_repair = "unique")

sal_neg_dt$name <- c("QC","QC","QC","QC",

 "SAR-R","SAR-R","SAR-R","SAR-

R","SAR-R","SAR-R",

 "SAR-S","SAR-S","SAR-S","SAR-

S","SAR-S","SAR-S")

The instrument responses for positive and negative ions can
be combined into a single data structure, as the original
publication did. However, the publication does not suggest
that the two groups (SAR-R and SAR-S) can be separated
using either the positive or negative ionizing compounds
alone.

for HC combine both positive ion and negative ion

features

drop the extra name column and fix the remaining name

column

sal_dt <- dplyr::bind_cols(sal_pos_dt, sal_neg_dt) |>

 select(-name...264) |>

 rename(name=name...1)

Since HC depends on a distance calculation, normalizing the
responses is critical.

Normalize the entire data set by column (feature)

These will become rows in the HC matrix

sal_dt_rec <- recipe(name ~., data = sal_dt) |>

 step_normalize(all_numeric())

The recipe() function creates a data preparation
specification, which can then be applied to any data using the
prep() and bake() functions:

sal_dt_norm <- sal_dt_rec |>

 prep() |>

 bake(new_data = NULL)

The table sal_dt_norm now contains rows representing
samples and columns holding normalized compound
intensities. Normally, HC plots are shown with the sample
groups as columns matched to a dendrogram. In almost all
cases where HC is used for unsupervised learning, there are
many more features than observations. So plots tend to be
shown as rectangles in “portrait orientation.” The table can
be filtered to remove samples that are not part of the
experimental design, and the label (name) can be removed
and transposed as a matrix to orient the data to a portrait
format. After transposition with t(), the new column names

can be added back and the row names can be removed to
replace them with matrix row numbers.

Drop the QC samples and the name column then make the

matrix and

transpose to orient the clustering in the prefered

direction

sal_matrix <- sal_dt_norm |>

 filter(name!="QC") |>

 select(-name) |>

 as.matrix() |>

 t()

set the column names to the sample names

colnames(sal_matrix) <-

 c("SAR-R-1","SAR-R-2","SAR-R-3","SAR-R-4","SAR-R-

5","SAR-R-6",

 "SAR-S-1","SAR-S-2","SAR-S-3","SAR-S-4","SAR-S-

5","SAR-S-6")

The combined dendrogram and the heatmap typically shown
for hierarchical clustering can be produced using the
heatmaply() function from the heatmaply package. The
heatmaply() function is designed to generate hyper-text
markup language (HTML) output that contains interactive
graphic elements using the plotly package. This is very
useful if your plot is part of an HTML report. A static version
of an HC plot can be created by modifying the output of the
heatmaply() function. Because the heatmap needed for the
SAR data includes so many rows, there is no easy way to
include the compound names associated with the rows. By
generating a ggplot object with heatmaply() using the
plot_method = "ggplot" parameter, the y-axis ticks and text
can be removed with the element_blank() function:

hc_plot <- heatmaply(percentize(sal_matrix),

 scale = "row",

 show_dendrogram=c(FALSE,TRUE),

 return_ppxpy = TRUE, plot_method =

"ggplot")

hc_plot[[1]]$theme$axis.ticks.y <- element_blank()

hc_plot[[1]]$theme$axis.text.y <- element_blank()

Then, the arrange_plots() function from the heatmaply
package can be used to place the components of the HC plot
together in one image that properly combines the
dendrogram, heatmap, and legend:

heatmaply:::arrange_plots(hc_plot, widths = NULL,

heights = NULL,

 row_dend_left = FALSE,

 hide_colorbar = FALSE)

In Figure 7.5, you can see that the two strains of Salmonella

typhimurium can be separated using all the features.
However, there is nothing particularly compelling about the
heatmap. Figure 7.5 differs significantly from the published
figure. One reason for the difference could be that the
features most correlated with the label were preselected
before clustering. As I’ve mentioned repeatedly, preselecting
features based on correlation with the outcome is a common
and dangerous form of label leakage. When there are many
features, some will be correlated with the label by chance. If
these are selected before performing hierarchical clustering,
it will appear as if some compounds strongly explain why the
samples clustered together. When correlated features are
preselected, the HC plot will look compelling but could
represent only spurious correlations. In this example, HC
does split the samples into two groups; the features
measured separate the two groups; however, the explanatory
power of the heatmap is weak. While I have continuously

described how label leakage is damaging to building models,
this has mostly been described in the context of supervised
learning, where the label is used to cheat the testing step to
overstate the quality of a model when used on test data. If
feature leakage had been allowed, Figure 7.5 would have
shown a more drastic difference between the two classes, but
it would have been an example of label leakage damaging an
unsupervised learning method.

Figure 7.5 Hierarchical clustering of positive and

negative features for SAR-R and SAR-S strains.

7.5 Using Unsupervised Methods with

Mass Spectra

(7.1)

The use of unsupervised learning with spectra has a long
history in the form of spectral matching and library search.
Performing spectral library searches using a similarity
measure has been a central element of structure
identification using electron impact (EI) ionization mass
spectra and matching MS/MS spectra to the theoretical
spectra of peptides, as I showed in Chapter 3. In this section,
I will describe various ways to estimate the similarity of two
spectra in the context of library searching.

7.5.1 Measures of Spectral Similarity

Using algorithms to compute the similarity between two
spectra has been used since the early days of the
computerization of mass spectrometry [210, 211]. The most
common approach to calculating spectral similarity is to treat
the mass spectrum as a vector and apply one of the many
methods for determining the distance between two vectors
and applying the basic relationship between distance and
similarity [212]:

One of the earliest and most used spectral similarity
measures is the cosine similarity [213]. The idea is to treat a
mass spectrum as a vector. If two mass spectra are binned
into equal-length vectors, with the intensity values at each
binned m/z value (element of the vector), then any two
vectors, regardless of the number of dimensions (vector
elements), will lie in a plane, and there is an angle defined
between them. While there is chemical information in the
relative intensities of the m/z values, it is usually
recommended that the intensities be scaled, with the most
logical scaling resulting in the vector having a length of 1 so
that it represents a vector that points to a location on a unit

(7.2)

hypersphere. Other scaling methods have also been used
[213], some combining m/z values to increase or decrease
the importance of different parts of the mass spectrum.
With an angle computed between the two vectors using the
dot product, the is a convenient similarity measure that
goes smoothly between 1 (identical vectors) and 0
(orthogonal vectors). The measure is also called the
contrast angle, used in many domains ranging from voice
recognition to satellite and image analysis [214].
In Figure 7.6, you can see that the angle relates to the
distance between the endpoints of the two vectors derived
from a mass spectrum. The relationship can also be shown
mathematically [215]:

Figure 7.6 The angle between the normalized vector

from an unknown mass spectrum (), and the

normalized vector from a library spectrum (), is

perfectly correlated with the Euclidian distance

between the endpoint locations on a hypersphere.

Equation 7.2 means that when unit scaling is used to
normalize a vector derived from a mass spectrum, the order
of similarities when comparing a target spectrum to a library
of known spectra will be the same with both the contrast

angle and Euclidian distance, and that the results are
equivalent to using a k-nearest neighbors clustering method.
I will use the philentropy package [216], which implements
many distance and similarity measures. I will use the low-
level functions from philentropy, which are nominally
intended to be used via a wrapper function called distance().
The only consequence of this choice is that you have to pay
attention to what the low-level functions return since both
distance and similarity measures are implemented. Of
course, similarity and distance can be interconverted using
Eq. (7.1).
To demonstrate how spectral comparison can be performed
in R using distance and similarity functions, I will use a
library from the MassBank of North America (MoNA) [217,
218]. The MoNA repository contains many different libraries
that are available in multiple formats. For this example, I
downloaded the LC-MS/MS Positive Mode library, which
contained 99 260 LC-MS/MS spectra at the time of writing. I
downloaded the library in the NIST MSP file format, a flat
text format that holds spectra and chemical structure
information. The file can be read using the Spectra package
with the addition of the MsBackendMsp package [16] to parse
the file. The manual for the NIST MS Library search program
[219] contains details on the MSP file format.
To compute spectral similarities using philentropy, I will read
the MoNA positive ion library file and tidy the data up. As
mentioned by Rainer et al. in their paper [16], the MSP file
format has several variations depending on who generated it,
so moving from the Bioconductor data structures to tidyverse
structures is, again, the first step.

mona_positive <- Spectra(

 file.path("large-data","mona","MoNA-export-LC-MS-

MS_Positive_Mode.msp"),

 source=MsBackendMsp())

Since I’m interested in small molecules and want manageable
vectors, I will remove library entries for compounds with a
molecular weight (MW) greater than 500 Da using the base R
selection syntax for the S4 object returned by Spectra().
Also, since not all library entries are equally complete, I’ll
remove any entries that don’t have a precursor m/z value
(PrecursorMZ) in the entry.

mona_positive_clean <- mona_positive[

 as.numeric(mona_positive@backend@spectraData$MW)

<=500 &

!is.na(mona_positive@backend@spectraData$PrecursorMZ)]

Now, I can create uniform length vectors from the m/z and
intensity values using the bin() function in the Spectra
package. Since all the intensity values will share the same
mass axis after binning, only one copy of the m/z values
needs to be saved, so lib_mz is assigned to the first element
in the list returned by mz().

bin_width = 1

#keep zero value m/z elements

lib_mz <- mz(Spectra::bin(mona_positive_clean,

 binSize=bin_width,

 zero.rm=FALSE))[[1]]

#keep zero value intensity elements

lib_inten <-

intensity(Spectra::bin(mona_positive_clean,

 binSize=bin_width,

 zero.rm=FALSE))

It’s worth checking the vector to ensure the binning worked
as expected. The default way of handling multiple peaks in
the bin_width is to sum them. However, there are situations
where summing is not the appropriate way of combining

intensities. The default behavior can be changed by providing
a function using the FUN= parameter. For example, to select
only the largest peak in the bin, set the parameter to FUN=max.

head(lib_mz, 20)

[1] 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

12.5 13.5 14.5 15.5 16.5

[16] 17.5 18.5 19.5 20.5 21.5

The bins are set at 0.5 m/z intervals, so the first bin includes
all the measured signals between 1.5 m/z and 2.5 m/z, with a
center at 2.0 m/z. The low value is a consequence of the
acquisition settings across all the spectra entries. The m/z
values below 25 are unlikely to be structurally diagnostic or
even physically real. While, mathematically, there is nothing
wrong with leaving these entries as part of the vector, since
they are most likely not real, they should be dealt with when
creating the final library data structure.

max(lib_mz)

[1] 2994.5

The upper m/z value also seems to be an artifact of the
acquisition process. Since I will limit the molecular weight to
500, I will truncate the final vector for each spectrum. While
the binning worked as expected, the final vectors must be
cleaned to represent real spectra.
Next, I’ll get the compound names from the Spectra object
and prepare to assemble a search result score for the entire
library against a selected compound.

lib_names <- spectraData(mona_positive_clean,"Name") |>

 as_tibble() |>

 pull()

Since I want to perform a vectorized similarity calculation on
all the vectors in the library, a matrix will allow me to use the
apply() function, which should speed up the calculations for
even a relatively complex similarity measure to the whole
library.

lib_mat <- matrix(unlist(lib_inten),

ncol=length(lib_inten[[1]]), byrow=TRUE)

The library is now stored as a matrix, with the columns
representing m/z, the rows representing compounds, and the
value in each vector element representing the sum of all ion
intensities within the 1 Da range.

lib_inten_mat <- lib_mat[,25:499]

lib_mz_mat <- lib_mz[25:499]

The library has been truncated to use vectors that are 475
elements long, begin at m/z 26, and end at 500. The vector
length 475 and the start and end m/z values are somewhat
arbitrary based on my intention to search for small
molecules. The same procedure will work for larger
molecules and different m/z ranges, so change this part of
the preprocessing to meet your analysis needs.
Now, I’ll choose a target compound. I’d like a common
metabolite with multiple related substances for this example.
Tryptophan is a very common metabolite and has many
related substances. Multiple laboratories have likely
collected spectra for tryptophan and l-tryptophan, which
should make a good target compound:

length(which(grepl("^tryptophan$|^l-tryptophan$",

 lib_names, ignore.case=TRUE)))

[1] 85

As expected, there are many entries for compounds with
these two names. I’ll pick the first one on the list as the
target spectra:

target_index <- which(grepl("^tryptophan$|^l-

tryptophan$",

 lib_names,

ignore.case=TRUE))[1]

print(target_index)

[1] 240

As shown in Figure 7.6, the similarity measures benefit from
being normalized to unit length. I’ll create a simple function
unit_norm() to perform unit normalization. If you want to try
using one of the more complex normalizations in the
literature, they can also be expressed in a similar function.

unit_norm <- function(intensity_vector) {

 intensity_vector/sqrt(sum(intensity_vector^2))

}

Now the target vector can be normalized so that its Euclidian
length is 1:

target <- unit_norm(lib_inten_mat[target_index,])

sqrt(sum(target^2))

[1] 1

Plotting the binning spectrum indicates how much
fragmentation was generated for this molecule.

p_target_spectrum <- ggplot() +

 coord_cartesian(xlim=c(25,500)) +

 geom_segment(aes(x=lib_mz_mat, y=target,

 yend = 0, xend = lib_mz_mat),

 linewidth = 0.5, color=pal$blue) +

 xlab("m/z") +

 ylab("Intensity") +

 theme_classic() +

 theme(plot.title = element_text(hjust = 0.5)) +

 theme(plot.subtitle = element_text(hjust = 0.5)) +

 ggtitle(label =

paste0(mona_positive_clean[target_index]@backend@spectr

aData$Name,

 " - Index ", target_index),

 subtitle = "Unit Normalized")

print(p_target_spectrum)

Using the apply() function row-wise (MARGIN=1), I can use any
distance and similarity functions from the philentropy
package to calculate the scores for the entries in the library
for the target spectrum (Figure 7.7).

Figure 7.7 Binned m/z vector for tryptophan from

MoNA library.

scores <- apply(lib_inten_mat, MARGIN=1,

 function(x)

cosine_dist(unit_norm(x),target, testNA = FALSE))

All the cosine scores have been calculated and represent
similarity (1 is identical, 0 means nothing in common). The
name cosine_dist() in the philentropy package is somewhat
confusing. This low-level function actually returns the cosine
similarity. The philentropy package documentation states
that its functions either return similarity or distance. In this
case, the return value and the name do not seem to match.

The search score results from highest to lowest can be seen
with a little tidying up:

sim.df <- tibble(index=1:length(scores), score=scores)

search <- sim.df[order(sim.df$score, decreasing=TRUE),]

search$compound <- lib_names[pull(search[,"index"])]

search$order <- 1:length(scores)

search <- dplyr::relocate(search, order)

You can print the search table, but if you want a nicer table,
you can also use the flextable package to make Table 7.1,
which has many options for output to HTML, PDF, and
various Microsoft Office formats.

TABLE 7.1

Cosine similarity search results

order index score compound

1 240 1.0000000 TRYPTOPHAN
2 43781 1.0000000 TRYPTOPHAN
3 72907 0.9727516 Abrine
4 72817 0.9711557 L-Tryptophan
5 30436 0.9111296 Tryptophan
6 41907 0.8892105 L-Tryptophan
7 37673 0.8886585 TRYPTOPHAN
8 52533 0.8819955 Tryptophan
9 39440 0.8773309 TRYPTOPHAN
10 52534 0.8573843 Tryptophan
11 73006 0.8549529 Fusaric acid
12 48337 0.8491632 Trp
13 39300 0.8409194 N-ACETYLTRYPTOPHAN
14 38552 0.8307040 N-ACETYLTRYPTOPHAN
15 40244 0.8292659 N-Acetyl-tryptophan; LC-tDDA;

CE40

set_flextable_defaults(fonts_ignore = TRUE)

flextable(search[1:15,]) |>

 colformat_int(big.mark = "") |>

 autofit()

These results are quite revealing. First, there is a duplicate
library entry at index 43781. The only way that another entry
besides the target can get a perfect score is for every
element in the vector to be identical.

The submitter of the library spectrum for MoNA is in the
Comments variable and can be extracted with a regular
expression using the str_match_all() function from the
tidyverse.

comments <-

mona_positive_clean@backend@spectraData$Comments[240]

str_match_all(comments, "submitter=submitter = (\\w+

\\w+)")[[1]][,2]

[1] "Arpana Vaniya"

comments <-

mona_positive_clean@backend@spectraData$Comments[43781]

str_match_all(comments, "submitter=submitter = (\\w+

\\w+)")[[1]][,2]

[1] "Arpana Vaniya" "Xing Wang"

The target and the duplicate were both originally submitted
by the same author. The duplicate included both the original
submitter and the duplicate submitter. This type of
duplication can happen in public repositories through no
fault of the duplicate submitter. However, it shows that there
can be issues using machine learning algorithms on these
repositories when the algorithm is sensitive to duplicates.
Another important thing to notice in this search list is that
the cosine score has no semantic meaning. Scores very close
to 1 mean that spectra are very similar, and those close to 0
are very different, but the values in the midrange convey no
indication of partial similarity. A score of 0.5 has very little
meaning based on how cosine similarity is defined.
Based on work done by Stein and Scott [213], cosine
similarity was thought to produce a different search result

than Euclidian distance. As Alfassi [215] has since pointed
out, Figure 7.6 shows that when the vectors are normalized
correctly, the angle and the distance must be correlated
and thus must produce identical ordering of search results.
The equivalence of the search result order can be
demonstrated by performing the comparison using the
euclidian() function.

euclidian_distance <- apply(lib_inten_mat, MARGIN=1,

 function(x)

euclidean(unit_norm(x),target, testNA = FALSE))

Since euclidian() returns a distance, I’ll convert it to a
similarity using Eq. (7.1):

convert distance into similarity

scores <- 1/(1 + euclidian_distance)

Tidy up the data for display (shown in Table 7.2):

TABLE 7.2

Euclidian distance search results

order index score compound

1 240 1.0000000 TRYPTOPHAN
2 43781 1.0000000 TRYPTOPHAN
3 72907 0.8107372 Abrine
4 72817 0.8063318 L-Tryptophan
5 30436 0.7034362 Tryptophan
6 41907 0.6799382 L-Tryptophan
7 37673 0.6793973 TRYPTOPHAN
8 52533 0.6730347 Tryptophan
9 39440 0.6687549 TRYPTOPHAN
10 52534 0.6518605 Tryptophan
11 73006 0.6499398 Fusaric acid
12 48337 0.6454744 Trp
13 39300 0.6393626 N-ACETYLTRYPTOPHAN
14 38552 0.6321566 N-ACETYLTRYPTOPHAN
15 40244 0.6311725 N-Acetyl-tryptophan; LC-tDDA;

CE40

sim.df <- tibble(index=1:length(scores), score=scores)

search <- sim.df[order(sim.df$score, decreasing=TRUE),]

search$compound <- lib_names[pull(search[,"index"])]

search$order <- 1:length(scores)

search <- dplyr::relocate(search, order)

While the similarity scores computed from differ from the
values of , the order of the index values of library

matches in Table 7.2 is the same as in Table 7.1. This
confirms that Euclidian distance and cosine similarity
produce the same search results as suspected based on
Figure 7.6, and shown mathematically by Alfassi [215].
Since Euclidian distance and cosine similarity produce the
same search results, having an alternative method could be
valuable when trying to identify candidate structures for a
mass spectrum from an unknown compound. A library search
uses spectral similarity scores to find chemical structures
that might have generated the spectrum, thus a natural place
to look for a more chemically meaningful comparison. One
approach is to treat the mass spectrum as a molecular

fingerprint and use molecular fingerprint similarity measures
to compare spectra.
A molecular fingerprint is an abstraction of structural
features usually represented as a binary vector of various
lengths in which a structural feature is either present or
absent. Because of their importance in drug screening, there
are a huge number of ways to compute molecular
fingerprints [220]. The molecular fingerprint features have
values of either 1 or 0, and the fingerprint is handled as a
binary vector. While the most common measure of distance
between two vectors is Euclidian distance [220], for
molecular fingerprints the industry standard is the Tanimoto

coefficient [212, 221, 222]. When searching spectral libraries
or comparing an unknown spectrum to a theoretical
spectrum, the mass spectrum is used as a type of molecular
fingerprint. A vector representing a mass spectrum has
continuous feature values (peak intensities), however, rather
than binary values. There is, however, a continuous version
of the Tanimoto coefficient, which, like the binary version,
takes common and unique peaks into more consideration
than the Euclidian distance. It’s worth testing the Tanimoto
coefficient for library search to see if the similarity measure
gives more chemically meaningful scores based on the
intuitive logic of giving extra weight to the number of peaks

in common when considering the similarity of two mass
spectra.
The details of computing the continuous Tanimoto coefficient
and related measures are outside the scope of this book, but
more details can be found in Drost [216] and implemented in
the philentropy R package.
As with other functions in the philentropy package, the
Tanimoto coefficient is computed in much the same way as
the cosine and Euclidian measures:

tanimoto_distance <- apply(lib_inten_mat, MARGIN=1,

 function(x)

tanimoto(unit_norm(x),target, testNA = FALSE))

scores <- 1/(1 + tanimoto_distance)

sim.df <- tibble(index=1:length(scores), score=scores)

search <- sim.df[order(sim.df$score, decreasing=TRUE),]

search$compound <- lib_names[pull(search[,"index"])]

search$order <- 1:length(scores)

search <- dplyr::relocate(search, order)

Notice that in Table 7.3, the top four spectra are the same as
found by the other measures (Tables 7.1 and 7.2). However,
the list order varies after that. Also, the scores drop faster
than the cosine distance measure. Also, the score’s meaning
can be understood in terms of the number of peaks shared
between the two spectra combined with features of the
space-like distance measure. Tanimoto similarity is more
physically intuitive than the other measures and incorporates
many of the heuristic ideas proposed for spectral similarity
over the years [211, 213, 214, 223–225].

TABLE 7.3

Tanimoto coefficient search results

order index score compound

1 240 1.0000000 TRYPTOPHAN
2 43781 1.0000000 TRYPTOPHAN
3 72907 0.7991675 Abrine
4 72817 0.7923571 L-Tryptophan
5 37673 0.7242599 TRYPTOPHAN
6 39440 0.7147021 TRYPTOPHAN
7 41907 0.7055148 L-Tryptophan
8 52533 0.7048442 Tryptophan
9 30436 0.6998091 Tryptophan
10 52534 0.6765164 Tryptophan
11 30435 0.6755546 Tryptophan
12 42113 0.6713750 TRYPTOPHAN
13 48336 0.6653411 Trp
14 39300 0.6627067 N-ACETYLTRYPTOPHAN
15 38529 0.6617035 TRYPTOPHAN ETHYL ESTER

Unsupervised learning has serious limitations because of the
basic lack of knowledge of ground truth regarding the
observation. When you don’t know what class observations
belong to or the true value of an outcome of a predicted
numeric value, then the unsupervised learning methods are
the method of last resort. When you don’t know what sample
belongs to what group, just knowing that two samples are
somehow similar can lead to chemical and biological insights.
It is, however, not a great use of an unsupervised learning
method to withhold the known class and use your eye to
confirm that groups you already knew existed ended up

similar in some way. For that, it is much better to use
supervised learning, which uses the known class to test the
algorithm’s prediction so that you can use the errors made to
estimate the quality of future predictions.

7.6 Supervised Learning

Supervised learning is learning from observations where the
outcome or grouping is known. It is learning from history by
fitting a model to data from the past to use it to predict the
future. The term supervised simply means that for historical
data, you know the outcome, and you use statistical methods
to minimize the error your model makes when using the
inputs to calculate the output compared to the known

outcome. The known outcome is called the label or target,
and the inputs to the model are the features described in
Section 7.3.3.
In all supervised learning algorithms, a calculation is
performed using the prediction of the model and the known
outcome. The calculation uses a cost function, sometimes
called the loss function or the objective function. Put simply,
the difference between the model prediction and the known
outcome is used to adjust parameters in the model. So, the
learning in machine learning is identical to fitting in
statistics. It sounds more impressive when you say the model
learns or that it is trained to produce the correct response.
The term learning is a bit of anthropomorphizing that is
mostly harmless. However, this jargon can make it easy to
forget that problems with learning models can usually be
framed in statistical terms of fitting a model to data.

(7.3)

7.6.1 Overfitting and the Bias-variance Tradeoff

Another example of anthropomorphizing in machine learning
is the saying that there is a risk that the model will memorize

the data, meaning that training error will go to zero but the
performance on the test set and subsequent data sets may
get worse. In very familiar statistical terms, this is
overfitting. An overfit model will fail to work properly when
presented with new data. As described above, the loss
function defines how well a model works. Often the loss
function is based on the mean squared error (MSE) or the
average of the square of the differences between what the
model predicts and the actual outcome value. It is easy to
imagine that a sufficiently complex model can be fit such that
it goes through every point in a data set. The MSE would be
zero, and the bias would also be zero. If such a model uses a
high degree of curvature to achieve zero bias, then the
computed variance of the values predicted by the model will
be large. Since the data used to fit the model is only a
sampling of the total population of possible observations, the
real goal of a model would be to minimize the global MSE,
not just the local MSE of the sample. In other words, the goal
is to minimize the expected value of the MSE when tested on
arbitrarily many points outside of the training set, based only
on the training set. The expected value for the MSE for new
data can be decomposed using Eq. (7.3) [226]:

The Irreducible Error term is caused by noise in the data and
cannot be eliminated no matter how good the model is. The
bias term is how much the estimated value differs from the
true value, and the variance term is how much the model is
the square of the deviation of the predictions of the model
around the true value.

Equation 7.3 means that while some error will always be
present because of noise, the amount of expected total error

from a model is a balance between the contribution from bias
and the contribution from variance. Figure 7.8 shows the
bias-variance tradeoff in terms of total error and model
complexity.

Figure 7.8 The bias-variance trade-off is shown in

terms of model complexity. The total error is based on

the mean square error decomposition, and model

complexity is expressed in terms of the number of

model parameters.

In this chapter, I will use two powerful methods for using the
available data to estimate the performance of a model on a
population: splitting the data into training and test sets and
the method of cross-validation.

7.6.2 Splitting Training and Testing Data

One of the central techniques used in machine learning to
find the optimum model complexity and avoid overfitting is to
hold out a subset of the data available and use it to check
how well the model will perform on data it was not trained
on. When the data is split to create a hold-out set, the
procedure is called a train-test split. Simply, the approach is
to train the model on the training split of the data and
minimize the errors made. If the model is overfit, the training
error will go to zero. So, the objective is to choose a model
using the training error to pick parameters that minimize the
test data error. It is remarkably easy to cheat at this task and
fool yourself into believing that your model is working better
than it is. The most common and difficult error to eradicate is
letting information from the test set leak in various ways into
the training process. That leads to a central rule in machine
learning:

The Prime Directive: Whenever you perform an
operation involving a test set (or any kind of hold-out
data), ensure it is isolated from the training set. If any
information from the test set leaks into the model or the
training data, your model will be compromised, sometimes
beyond repair.

Using the benzodiazepines data and the data preparation
recipe built in Section 7.3.1, I will show how to build several
models using the tidymodels framework. This time, before
the recipe is specified, I will split the data into two parts: the
training set and the test set. There is no perfect split ratio,
although there are rules of thumb to follow. The training data
set is usually between 70 and 80% of the data. Later, I will
show how to use cross-validation to estimate model
performance using only the training set. Another good
practice is to ensure the training and testing sets have

roughly the same proportions of the outcome variable, which
is called stratification.
In the benzodiazepine data, observations represent
characteristics of chromatographic peaks found for two
compounds: lorazepam and temazepam. The goal of this
example is to use the chromatographic features to predict
which compound is present. Predicting the class of an
observation is a typical classification problem in machine
learning. Classification is not restricted to two groups; the
methods shown in this chapter will generalize to any number
of groups. It’s easy to imagine wanting to classify an
observation related to benzodiazepines into all of the
compounds in that class that are measured by an assay.
Visualizing binary classification results is easy, and its
prevalence in real-world problems makes it more than a toy
example.
First, I’ll specify how to split the data, using 75% for training
and 25% ensuring that the ratio of lorazepam to temazepam
observations is the same in both sets using initial_split():

set.seed(2112)

benzo_data_split <- initial_split(benzos_msdata, prop =

0.75, strata=compound)

benzo_data_split

<Training/Testing/Total>

<750/250/1000>

The initial_split() function uses sampling to place each
observation in the training or test set. The training() and
testing() functions extract the training and test sets from
the original data using split specifications.

benzo_training_data <- training(benzo_data_split)

benzo_testing_data <- testing(benzo_data_split)

The preprocessing recipe is specified based on the training
data:

benzo_classification_recipe <- recipe(compound ~ .,

data = benzo_training_data) |>

 step_rm(index) |>

 step_log(all_numeric()) |>

 step_normalize(all_numeric())

It is important to remove the index variable since the data
are sorted by compound, which puts all the lorazepam
observations within one range of index values and the
temazepam values in a different range. The perfect
correlation of index values with the compound class is an
example of label leakage described above.
In the next few sections, I will show how to use some well-
known machine learning algorithms to point out some key
ideas for their application to mass spectrometry data. You
can consult the many references for the details of the models
I show here and learn about many others I won’t cover. The
excellent text An Introduction to Statistical Learning (ISL) is
a great place to start [204]. It can be followed by the
legendary book, The Elements of Statistical Learning (ESL)
[184]. For an even deeper dive, Kevin Murphy’s Probabilistic

Machine Learning books [227, 228] provide a comprehensive
coverage of the most recent advances in machine learning.

7.6.3 Logistic Regression

The tidymodels package parsnip provides functions for model
specification for a wide range of model types and helper
functions to work with models and modeling results. I will

start with one of the least complicated and most used
machine learning algorithms for classification: logistic

regression. The word regression in the name means that the
algorithm uses a maximum likelihood method to fit
parameters to the model. Unlike the linear regression used in
Section 6.5.3, where the model predicts the outcome value
based on fitting a linear equation, in classification, the
prediction is the probability of an observation belonging to a
class. Logistic regression fits a logistic function to qualitative
data by encoding the class as a numeric value and
performing optimization to estimate the parameters that best
separate the classes. The value of the logistic function ranges
from 0 to 1, representing the probability of an observation
belonging to a particular class. Logistic regression models
are linear models, so to work well, the classification
boundary needs to be described by a linear equation.

logistic_model <- logistic_reg() |>

 set_engine("glm") |>

 set_mode("classification")

Next, I’ll build a workflow object that combines the recipe
with the model:

benzo_logreg_workflow <- workflow() |>

 add_model(logistic_model) |>

 add_recipe(benzo_classification_recipe)

benzo_logreg_workflow

== Workflow

==

=============

Preprocessor: Recipe

Model: logistic_reg()

##

-- Preprocessor ---------------------------------------

3 Recipe Steps

##

* step_rm()

* step_log()

* step_normalize()

##

-- Model --

Logistic Regression Model Specification

(classification)

##

Computational engine: glm

In binary classifications, the first level of an outcome is
treated as the “positive” case, and the second is used as the
“negative” case:

levels(benzos_msdata$compound)

[1] "lorazepam" "temazepam"

These factors are coded automatically by R into numeric
values for use in the regression:

as.numeric(unique(benzos_msdata$compound))

[1] 1 2

The two factors are coded as numbers 1 and 2. For logistic
regression, these codings are fine. To perform the
classification, a probability for every outcome is computed.
The predicted class is the outcome that has the highest
probability. In a two-class dataset situation, a probability
above 0.5 means that the observation is predicted to be from
the first class in the list, which is called positive. The terms
positive and negative in binary classification come from the
historical use of these tools to distinguish between a

treatment having an effect (positive) and no effect (negative).
If the two classes are compound names, then a true positive
is the correct call of the first class, and a true negative is the
correct call of the second. In this classification, lorazepam is
the first level and is treated as the positive case. In a binary
classification, the positive or negative class value is arbitrary.
The default is to treat the first categorical level as positive
and the second as negative. There are no mathematical limits
to the number of classes that can be predicted: there is
always a boundary between a specific class of observations
and all other classes.
Now, the workflow can be used to train the specified model
using the parsnip fit() function:

benzo_logreg_fit <- benzo_logreg_workflow |>

 fit(data = benzo_training_data)

To see the fit, you can extract it from the workflow using the
parsnip helper function extract_fit_parsnip():

benzo_logreg_fit |>

 extract_fit_parsnip() |>

 tidy()

A tibble: 7 x 5

term estimate std.error statistic

p.value

<chr> <dbl> <dbl> <dbl>

<dbl>

1 (Intercept) 4.46e-1 8.92e-2 4.99

0.000000591

2 response -6.12e-1 3.48e-1 -1.76 0.0788

3 peakAreaQuant 3.61e+8 9.45e+8 0.382 0.702

4 peakRTQuant 9.49e-1 7.63e-1 1.24 0.214

5 peakAreaQual -3.52e+8 9.21e+8 -0.382 0.702

6 peakRTQual -2.93e-3 7.66e-1 -0.00382 0.997

7 ionRatio -1.21e+8 3.15e+8 -0.382 0.702

(7.4)

Since logistic regression divides the classes along linear
boundaries, the model’s parameters can be evaluated using
normal statistical measures, such as the standardized
parameter estimate and the -value for the test statistic. In
logistic regression, the -score is used as the test statistic
instead of the -score, which is used for linear regression.
The -score is computed from the parameter estimate and
the standard error:

One of the reasons that logistic regression is still used and
still important is that the z-score can be used to determine
variable importance in the model. This makes it easy to
determine how a model makes predictions and why a
particular class was predicted for a specific observation.
While highly correlated features can cause problems for this
simple approach to explaining a model [229], it is a very
desirable quality. The ability to observe all the model
parameters directly and to measure their importance makes
logistic regression a self-explanatory model.
A key idea in the tidymodels approach to machine learning is
to standardize how models are used so that you can use a
common approach to all models. This standardization allows
variable importance, also called feature importance, to be
computed for any model. The vip() function package works
with a workflow object to show which variables contribute the
most to a classification outcome. In Figure 7.9 obtained from
the vip() function matches the z-score for the variables in
the model shown above. As I will show for the next two
machine learning algorithms, variable importance is not so
easily estimated for other model types. The lack of a simple
model explanation will require additional tools to explain how
a model works in general and why a specific outcome was
obtained for a particular observation. The vip package can

perform variable importance calculations for a wide range of
models using a variety of approaches [230].

vip(benzo_logreg_fit)

Figure 7.9 A visual representation of the importance

attributed to variables in the logistic regression

model fit to the benzodiazepine data.

The model has been fit and can now be applied to the
testing_data (Figure 7.9). The predict() function is used with
the type= "prob" parameter to compute the probabilities for
each observation being in a class.

benzo_logreg_test_pred <- benzo_logreg_fit |>

 predict(new_data=benzo_testing_data, type = "prob")

|>

 bind_cols(select(benzo_testing_data, compound))

To see what the predictions looks like, you can take a random
sample of the predictions using sample_n():

set.seed(42)

sample_n(benzo_logreg_test_pred, size=6)

A tibble: 6 x 3

.pred_lorazepam .pred_temazepam compound

<dbl> <dbl> <fct>

1 0.172 0.828 lorazepam

2 0.106 0.894 temazepam

3 0.564 0.436 lorazepam

4 0.206 0.794 temazepam

5 0.274 0.726 lorazepam

6 0.211 0.789 temazepam

In the first observation, the probability of the outcome
matching the compound lorazepam (the positive case) is
below the threshold of 0.5, which means it would be
considered a false negative. The classifier predicted the
observation would be the compound temazepam (the
negative case). The classifications are correct in the rest of
the sampled observations and fall into the true positive
category.

Important definitions: Sensitivity, Recall, Specificity,
and Precision have special meanings in the context of
machine learning. The definitions I will be using are given
below:

(7.5)

(7.6)

(7.7)

One of the most common visual tools for evaluating a binary
classifier is to plot the Receiver Operating Characteristic

(ROC) curve. It is a plot of the sensitivity (also called the true
positive rate) against one-sensitivity (the false positive rate)
at every threshold value (0-1). In this type of curve, a 45-
degree line represents the performance of a classifier that
randomly selects the class for observation. A well-performing
classifier will produce an ROC curve with a low false positive
rate as the true positive rate increases to 100%. Remember
that positive and negative are arbitrarily assigned to
compound names in this classifier, so the ROC curve is
plotted using the positive case .pred_lorazepam. Using the
predictions made on the test data, the ROC curve is
computed with the roc_curve() function. Figure 7.10 shows
the ROC curve for the logistic regression classifier.

Figure 7.10 ROC curve for logistic regression

classification of lorazepam (positive) and temazepam

(negative). The dashed line represents random (no

skill) classification.

benzo_logreg_test_pred |>

 roc_curve(compound, .pred_lorazepam) |>

 autoplot()

The area under the ROC curve (ROC AUC) shown in Figure
7.10 is computed by the roc_auc() function and shows how
the model performed on the test data:

benzo_logreg_test_pred |>

 roc_auc(compound, .pred_lorazepam)

A tibble: 1 x 3

.metric .estimator .estimate

<chr> <chr> <dbl>

1 roc_auc binary 0.871

The confusion matrix indicates performance, especially
regarding false positive and false negative calls. You need the
predicted class to plot the confusion matrix rather than the
probability of class membership. A class is assigned when it
has the highest probability based on the fit. In the case of a
binary classifier, the threshold for being in the positive class
is 0.5.

benzo_logreg_test_pred_class <- benzo_logreg_fit |>

 predict(new_data=benzo_testing_data, type = "class")

|>

 bind_cols(select(benzo_testing_data, compound))

Sampling this prediction shows the predicted class compared
to the actual class.

set.seed(112)

sample_n(benzo_logreg_test_pred_class, size=6)

A tibble: 6 x 2

.pred_class compound

<fct> <fct>

1 temazepam temazepam

2 temazepam lorazepam

3 temazepam temazepam

4 temazepam lorazepam

5 temazepam temazepam

6 lorazepam temazepam

The confusion matrix for the classifier is shown in Figure
7.11

Figure 7.11 The confusion matrix for the logistic

regression classifier showing the number of true and

false positive calls and the number of true and false

negative calls.

benzo_logreg_test_pred_class |>

 conf_mat(compound, .pred_class) |>

 autoplot(type="heatmap")

There seems to be a problem with the classification of
lorazepam. The classifier does only slightly better than
random. The class-specific problems are not revealed in the

ROC’s shape or AUC. Another informative plot is the
precision-recall (PR) curve.
Like in the ROC curve, a no-skill classifier would assign
classes randomly, which for the PR curve is simply the ratio
of positive observations in the dataset:

confusion_matrix <-

tidy(conf_mat(benzo_logreg_test_pred_class,

 compound,

.pred_class))

no_skill <- sum(confusion_matrix$value[1:2]) /

sum(confusion_matrix$value)

no_skill

[1] 0.412

The precision-recall curve for the logistic regression
classifier is shown in Figure 7.12

Figure 7.12 Precision-recall curve for the

classification of the positive case (compound =

lorazepam). The dashed line represents random (no

skill) classification.

benzo_logreg_test_pred |>

 pr_curve(truth=compound, .pred_lorazepam) |>

 autoplot() +

 geom_hline(yintercept=no_skill, linetype="dashed")

benzo_logreg_test_pred |>

 pr_auc(compound, .pred_lorazepam)

A tibble: 1 x 3

.metric .estimator .estimate

<chr> <chr> <dbl>

1 pr_auc binary 0.722

While the total area under the PR curve seems reasonable,
Figure 7.12 shows that for lorazepam, the classifier is only
moderately better than random. The shape of the PR curve
(curving from low to high and back to low) also suggests a
poorly performing classifier.
These results are unsurprising, considering that logistic
regression can only make linear separations. However, it is
always worth starting a simple, base model, like logistic
regression, before moving to more complex models. A
nonlinear separation might perform better, but if it’s not
significantly better than logistic regression, it might not be
worth the extra complexity.

7.6.4 Support Vector Machines

The support vector machine (SVM) is the first nonlinear
classification algorithm we’ll consider. Instead of using a
maximum likelihood estimator to compute model parameters,
support vector classifiers find a linear boundary that has the
largest margin of separation between classes, allowing for
some misclassifications. They belong to a family of algorithms
called large margin classifiers. Support vector machines are
support vector classifiers combined with a nonlinear kernel
to allow nonlinear decision boundaries to be computed. The
mathematical details are quite technical, but the idea is to
use a nonlinear function (called a kernel) to generate new
nonlinear features from the existing ones in hopes of finding

a linear boundary in a higher dimensional space. It seems
counterintuitive to add extra dimensions to improve a
classifier when the problem is usually that a dataset has too
many features, but the process works amazingly well, and
SVMs remain one of the most powerful classification
algorithms available.
The support vector classifier uses a loss function different
from the logistic regression, which includes a parameter not
computed from the data. Parameters that must be selected
before training on data are called hyperparameters. The new
parameter is called cost in the most basic support vector
classifier. It is the penalty added to the loss function for
predicting that an observation is within or on the wrong side
of the margin. Originally, the cost parameter was considered
unimportant, usually set to some small value like 1 and
ignored. Later, it was discovered that the value of the cost
parameter was very important to the success of support
vector classifiers [204]. In parsnip, when a model has an
important hyperparameter, these can be tuned using various
optimization methods.
One of the most common nonlinear SVMs uses a radial basis

function (RBF) as the kernel to transform the input features
into new, nonlinear features. Therefore, the RBF kernel adds
a second hyperparameter to the model, representing the
shape of the kernel. A model’s hyperparameters must be
selected before the training of the actual model parameters
begins. This selection is normally performed by searching for
values of each hyperparameter using only the training data.
Cross-validation is the most common method of testing the
performance of a classifier using only the training data.
Cross-validation is performed by dividing the training data
into several folds and treating one of the folds as a hold-out
test set. The classifier’s performance is measured on one fold
after being trained on the combination of the remaining
folds, which are used as a training set. The number of folds

can be selected based on the size of the training set, and the
general process is referred to as k-fold cross-validation.
Often, the number of folds chosen is 5 or 10, but there is no
optimum number. The individual performance measures for
each of the hold-out folds are averaged together to estimate
the performance of the classifier using a specific set of
hyperparameter values. This process is repeated for multiple
values of each hyperparameter.
As has been stressed throughout this chapter, cross-
validation will overestimate the performance of a classifier if
feature selection is done before the folds are created. The
correct way to perform cross-validation is to first create the
folds and then perform conditioning and feature selection on
the combined training folds. The parameters for conditioning
and selection are then applied to the hold-out fold. The
performance of the hold-out group can then be measured on
the features selected for that fold. When this is done, any
randomly correlated features will be averaged across all
folds, reducing the risk of selecting features correlated by
chance. If features are selected before the folds are created,
the cross-validation process can dramatically overstate the
performance of the classifier for a given set of
hyperparameters, resulting in poor model tuning, which may
then lead to a model that fits the training data poorly, and
ultimately performs poorly on the test set. A bigger mistake
would be to select features before splitting the data into
testing and training sets. Then, after cross-validation and
model selection, the model will seem to perform very well on
the test set, too, but can fail to generalize when new data is
introduced. For more details on cross-validation and its
pitfalls, see ISL and ESL [184, 204].
To improve on the logistic regression classifier for the
benzodiazepine data, I’ll show how to use an SVM with a
radial basis function (RBF) kernel and how to tune the two
hyperparameters: cost and RBF kernel shape. The SVM is
specified using the parsnip model svm_rbf(). To optimize the

model, the hyperparameters are indicated using the tune()
function. The cost hyperparameter is called cost and the
shape hyperparameter for the RBF version of an SVM is
called rbf_sigma. To use SVM RBF implemented in the
kernlab package, the set_engine() function is given the name
of the specific SVM package to use.

benzo_svm_model <- svm_rbf(cost=tune(), rbf_sigma =

tune()) |>

 set_mode("classification") |>

 set_engine("kernlab")

Next, I’ll create a regular grid of values for the two
hyperparameters to be tuned:

svm_grid <- grid_regular(cost(),

 rbf_sigma(),

 levels = 5)

To perform tuning, you must estimate how well the classifier
works for a particular hyperparameter setting using only the
training data. To do this, I will use k-fold cross-validation for
each grid point. For this example, I am using a 10-fold cross-
validation because I have so many observations to work with
that 1/10 being treated as a test is still a significant number.
Like in the initial split, I want the folds to contain roughly the
same ratio of positive and negative observations, so the folds
are stratified by compound, just like the train-test split.

set.seed(42)

benzo_folds <- vfold_cv(benzo_training_data, v=10,

strata=compound)

benzo_svm_workflow <- workflow() |>

 add_model(benzo_svm_model) |>

 add_recipe(benzo_classification_recipe)

benzo_svm_workflow

== Workflow

==

======================

Preprocessor: Recipe

Model: svm_rbf()

##

-- Preprocessor ---------------------------------------

3 Recipe Steps

##

* step_rm()

* step_log()

* step_normalize()

##

-- Model --

Radial Basis Function Support Vector Machine Model

Specification (classification)

##

Main Arguments:

cost = tune()

rbf_sigma = tune()

##

Computational engine: kernlab

Using the metric_set() function, you can specify the set of
metrics you want to collect during the hyperparameter
tuning process. In this case, I want to look at both accuracy
and the area under the ROC curve.

benzo_svm_metrics <- metric_set(accuracy, roc_auc)

Now the workflow can be created that uses tune_grid() to
tune the cost and rbf_sigma hyperparameters using the folds
specified by vfold_cv(), and the grid specified by
grid_regular() collecting the metrics in the metric set:

benzo_svm_tune <- benzo_svm_workflow |>

 tune_grid(resamples = benzo_folds,

 grid = svm_grid,

 metrics = benzo_svm_metrics)

The result is a set of performance metrics for various levels
of the two hyperparameters, which can be plotted (Figure
7.13):

Figure 7.13 Measurement of SVM performance on the

benzodiazepine data at different settings of the cost

and sigma hyperparameters. Both accuracy and area

under the ROC curve were computed using cross-

validation on the training data set to evaluate

performance.

autoplot(benzo_svm_tune)

Figure 7.13 shows that the SVM model using the radial basis
function kernel is very sensitive to the cost and rbf_sigma
values. A model with a low cost parameter will give poor
accuracy, and a model with a shape parameter above or
below 1 performs worse when measured by ROC area. It is

(7.8)

tempting to say that since the data were normalized and
centered, resulting in each column having a standard
deviation of 1 and a mean of 0, the most effective kernel
would also have a sigma of 1, but it is not that simple. Unlike
logistic regression models, support vector machines are an
example of a black box model. Because of the nonlinearity
introduced by adding many additional dimensions to the
observation using the kernel, it is not immediately obvious
why the model makes the classifications it does. You need
tools to act as explainers to get variable importance from
black box models. In Section 7.7, I will go into more detail
about explainers and what can be learned from them.
Now that the cross-validation tuning has been performed, I
can use select_best() to pick the best hyperparameter
values according to a selected metric. Both accuracy and
ROC AUC were measured during tuning. Accuracy is defined
in Eq. (7.8).

Because accuracy treats the positive and negative cases
equally, it can be misleading for imbalanced populations
(many more of one class of observations than another). You
will see both measured, but typically, the classifier with the
highest ROC AUC is considered one of the best ways to
choose hyperparameters and evaluate models in general.
From all the hyperparameters tested, the highest performing
model is selected with the select_best() function.

benzo_svm_best <- select_best(benzo_svm_tune, metric =

"roc_auc")

benzo_svm_best

A tibble: 1 x 3

cost rbf_sigma .config

<dbl> <dbl> <chr>

1 2.38 1 Preprocessor1_Model24

Once the best hyperparameters for the model have been
selected, the workflow is updated with those values using the
finalize_workflow() function. Finalizing the workflow does
not fit the workflow to any data set but creates the
specification, which includes both the sample preparation
and the model with all its hyperparameters fixed.

benzo_svm_final_wf <-

finalize_workflow(benzo_svm_workflow, benzo_svm_best)

The finalized workflow can then be fit to the cross-validation
folds and tested on the hold-out folds. The performance of the
final classifier can be estimated by averaging the
performance across all the hold-out folds.

benzo_svm_cv_fit <-

 benzo_svm_final_wf |>

 fit_resamples(resamples = benzo_folds,

 metrics = benzo_svm_metrics,

 control=control_grid(save_pred=TRUE))

collect_metrics(benzo_svm_cv_fit)

A tibble: 2 x 6

.metric .estimator mean n std_err .config

<chr> <chr> <dbl> <int> <dbl> <chr>

1 accuracy binary 0.961 10 0.00953

Preprocessor1_Model1

2 roc_auc binary 0.989 10 0.00559

Preprocessor1_Model1

This estimate of performance is based on the cross-validation
performed by fit_resamples() using training data. It is not
the final trained model. If these metrics show that the model
can perform well in cross-validation, you can proceed to the
final fitting step. If cross-validation shows that your model is
not performing very well, additional tuning or choosing a
different model might be in order. It is extremely unlikely
that a model that performs poorly in cross-validation will
perform well on new data it has never seen before.
In this case, the cross-validation performance is promising.

benzo_svm_final_fit <- benzo_svm_final_wf |>

 last_fit(split=benzo_data_split)

The last_fit() function performs the final fit on the training
data and tests the fit model on the test split to evaluate the
model’s performance.

benzo_svm_pred <- benzo_svm_final_fit |>

 collect_predictions()

The collect_predictions() function extracts the test data
predictions for model evaluation. These predictions can be
used to show the confusion matrix:

benzo_svm_pred |>

 conf_mat(compound, .pred_class)

Truth

Prediction lorazepam temazepam

lorazepam 98 4

temazepam 5 143

The ROC and Precision-Recall curves are shown in Figures
7.14 and 7.15.

Figure 7.14 The ROC curve for the tuned support

vector machine classifier using a radial basis

function. This plot represents the performance on

only the test data and suggests that the model will

generalize well to new observations.

Figure 7.15 Precision-recall curve for the SVM

classification of the positive case (compound =

lorazepam). The dashed line represents random (no

skill) classification.

benzo_svm_pred |>

roc_curve(compound, .pred_lorazepam) |>

 autoplot()

The ROC curve for the SVM is significantly improved over the
logistic regression ROC curve shown in Figure 7.10. The
precision-recall curve also reflects significant improvement:

benzo_svm_pred |>

 pr_curve(truth=compound, .pred_lorazepam) |>

 autoplot() +

 geom_hline(yintercept=no_skill, linetype="dashed")

The PR curve (Figure 7.15) shows the shape expected for a
high-performance classifier. The positive predictive value
(precision) remains nearly perfect at all thresholds until the
recall or true positive rate reaches 100%. At this point, the
classifier performs the same as randomly assigning
outcomes. In general, the more a classifier avoids acting like
it has no skill, the better.
What changed between the logistic regression and the SVM
was the introduction of curved boundaries between classes.
Curved boundaries can also change the importance placed on
the variables in the model. To get variable importance from
the SVM model, I will use the kernelshap() function from the
kernelshap package [231], which implements the Kernel

SHAP (SHapley Additive exPlanations). algorithm described
by Lundburg and Lee [232] and extended by Covert and Lee
[233].
Kernel SHAP is a complex algorithm, but at a high level, the
idea is to approximate Shapley scores for all the features in a
dataset. Shapley’s idea was to measure the contribution of
individual players to an outcome in a multiplayer game using
game theory [234]. In machine learning, the variables of an
observation are treated like players in a cooperative game,
and their contribution to the outcome, according to Lundberg
and Lee, is estimated by estimating the effect of removing a
variable from the model. The values must be approximated
because computing all the Shapley values requires the model
to be run with every possible combination of features.
Computing the contribution of every combination of features
is impractical except for a very small number of features. For
more insight into SHAP and other ML-explainer methods, see

Molnar’s Interpretable Machine Learning: A Guide for

Making Black Box Models Explainable [235].
Kernel SHAP is the only SHAP-based explainer that will work
with any type of model. Kernel SHAP’s method of
approximating all the combinations of features needed to
compute Shapley values is still computationally expensive
compared to a model-specific explainer if one is available for
the base learner you are using. In Section 7.7, I’ll show how
to efficiently collect SHAP values from tree-based models
using the treeshap package [236].
Using kernelshap() requires the training data, a background
data set to estimate the mean of each column, and a
predict() function for the specific model type used.
First, I use the classification recipe to create a version of the
entire training set and then remove the label compound for use
by kernelshap(). The Kernel SHAP algorithm needs the
column means, which can obviously be computed from the
entire data set. For large datasets (more than 100 rows), a
subsample is recommended to be used and provided to the
algorithm using the bg_X parameter. Since this data set was
normalized, I already know the mean of every column is zero.
However, this may not be the case for every dataset you want
to use, so I’m including the creation of the background
dataset to complete the example.

benzo_classification_training <-

prep(benzo_classification_recipe) |>

 bake(new_data=NULL) |>

 select(-compound)

bg_X <- benzo_classification_training[

 sample(nrow(benzo_classification_training), 100),]

Next, I extract the final model that was fit to the training
data using the extract_fit_parsnip() function:

benzo_svm_fit <- benzo_svm_final_fit |>

 extract_fit_parsnip()

Finally, I will provide a custom pred_fun function that returns
the class probabilities for the positive case (the first column)
from SVM models built with kernlab [237].

predict_function <- function (m, X) {

 predict(m, X, type="prob")[,1]

}

Now, the variable importance can be computed. Here,
kernelshap() is called, and its output is prepared for
visualization using the shapviz() function from the shapviz
package [238], which provides a range of functions like
sv_importantance(), which creates the variable importance
bar plot.

shap <- kernelshap(benzo_svm_fit,

 X=benzo_classification_training,

 bg_X = bg_X,

 pred_fun = predict_function,

 verbose = FALSE) |>

 shapviz()

sv_importance(shap, kind = "bar", fill=pal$blue)

The feature importance plot shown in Figure 7.16 hints at
why the SVM model performs so much better than the
logistic regression model. The response feature, which relates
to the absolute quantity of the compound in the sample, went
from the most important feature in Figure 7.9 to the least
important feature for the SVM. Based on the SVM feature
importance plot, the retention times of the quantifier and the
qualifier, along with the ratio of the quantifier and qualifier
areas (ionratio), are important in assigning the correct

compound name to an observation. This order of importance
matches our intuition of how compounds should be identified
and is also suggested in guidelines for evaluating data from
LC-MS/MS measurements [239]. Beyond variable importance
estimation, SHAP can also explain why a specific observation
produced a specific output. In Section 7.7, I show how SHAP
can be used to show both global and local explanations that
can help understand how a complex model produces the
predicted results.

Figure 7.16 Feature importance for the SVM model fit

to the benzodiazepine data using the Kernel SHAP

algorithm.

7.6.5 Boosted Trees

Both logistic regression and support vector machines
perform calculations on the numerical values of the
predictors. As you saw in the examples, preparing the data
with normalization and scaling was important before
modeling. The family of regression and classification
algorithms based on decision trees operate very differently.
As usual, the details can be found in ISL [204] and ESL
[184], but the essential idea is to perform splits of the data
on a single predictor at a time, resulting in two groups that
can then be split on the same or other features. The split
point is chosen based on a split rule, usually intended to
create the highest class purity in the two split groups (called
nodes). Traditional decision trees continue to split nodes
until the final nodes (called leaves) contain observations of
only one class. Exhaustive splitting can lead to very deep
trees and usually results in overfitting.
There are many ways to fight against overfitting when using
tree methods. One of the most successful approaches is to
create an ensemble of trees. When the tree results are
averaged together, the technique is called bagging. The most
successful of the bagged tree models is called a random

forest (RF) [184, 204], in which many low-bias, high-variance
tree models are built and their outputs are averaged
together. Since averaging reduces variance and has little
impact on the bias, the result can be a high-performing low-
bias, low-variance model. Another ensemble approach, called
boosting builds models sequentially. The residuals (mistakes)
of the first model are used to fit a second model, and so on
until the minimum total error is achieved. When the slope of
the residuals is used to estimate a gradient toward an error
minimum, the method is called gradient boosting [240].
Gradient boosting addresses the bias-variance trade-off from
the opposite direction of RF. With boosted trees, a weak
learner with high bias and low variance is built first, and the
bias is reduced by adding additional complexity to the model
in the form of additional weak learners. As discussed above,

the goal is to strike a balance between bias and variance to
minimize total error in the population. Boosted trees
effectively strike this balance while also providing other
benefits, and so have become one of the most popular
machine learning algorithms for tabular data available [241].
As the base learner for ensemble methods, tree models have
many desirable attributes. Trees can handle features that are
a mixture of numerical and categorical variables without
encoding. Trees can handle missing values without dropping
data or imputation. Trees are robust to outliers in the inputs
and don’t require scaling or normalization. They are also
computationally scalable and can handle correlated and zero
information predictors.
In the next example, I will show how to use one of the most
powerful implementations of boosted trees called XGBoost

[242], using the tidymodels framework. XGBoost computes
the first derivative of the loss function to create a gradient,
so it is part of the Gradient Boosted Machine family of
algorithms. Gradient boosting is a first-order method to
minimize error. XGBoost goes a step further, using Newton’s
method for minimizing error, which is a second-order method
[243]. XGBoost has gained widespread adoption since its
success in the Higgs Boson Machine Learning Challenge
[244] and since its introduction, has become a powerful
boosting library available for use in many languages.
To show how to use XGBoost, I’ll look at a challenging
classification problem from a large multiomics study. Yazd et
al. recently published a study combining small molecule
metabolites with lipids to classify meningioma biopsy
samples [245]. One of the goals was to use machine learning
to discover specific biomarkers related to the stage of the
disease. The paper, titled Metabolomic and Lipidomic

Characterization of Meningioma Grades Using LCHRMS and

Machine Learning, measured the chromatographic peak
areas of over 16 000 detected features in 85 biopsy samples

from patients with either Class I or Class II/III grade
meningiomas. Multiple machine-learning algorithms were
tested to find the best ML algorithm for this type of data. In
the comparison, an SVM appeared to perform the best, but
gradient-boosted trees were not tested. Given the number of
features, it is very probable that many are correlated or
uninformative.
The very large number of features also means that feature
selection could result in selecting features correlated with
the disease class by chance, making establishing the
importance of specific molecules as biomarkers difficult. The
authors took great care to ensure that all the data was
deposited Metabolights repository as MTBLS4938. Applying an
algorithm like XGBoost to this data could add extra insight to
the conclusions of this analysis.
Because the data were going to be used to test models like
support vector machines and logistic regression, the authors
performed data conditioning steps needed for algorithms that
perform calculations on the data:

“…we applied a k-Nearest-Neighbors imputation method to
find the k nearest samples and imputed the missing
elements (Python’s scikit-learn package). Then, we
normalized the data set to sum in order to correct the
instrumental and technical variation, followed by
transforming the data (log transformation) and autoscaling
each data set (to allow a more direct comparison between
features of wildly varying intensities) (Figure 6A). Next,
the normalized abundances of all of the metabolomic and
lipidomic features (in both polarities) were merged into
one feature table in Python.” [245]

This statement appears to violate the prime directive of
machine learning: they normalized and imputed all of the
data before performing any splitting used to test classifier
performance. Based on the quoted description of the data
preparation, the normalization and imputation steps resulted

in information leakage, which interfered with any future
performance testing. It means that in this study, there was no
data available for testing that could represent the larger
population of meningioma patients. Any information leakage
between the training set and the testing set can lead to
overfitting and overestimating how well a model will work on
new data.
The impact of creating a connection between the test set and
the training set via normalization has been studied
empirically by Brouke and Abdullah [246]. In their analysis of
information leakage from normalization, they found that
information leakage always results in some overestimation of
performance compared to models that had no information
leakage. The types of data sets used in the leakage analysis
study contained many more observations than features. For
example, the KDDCUP99 data set contains more than 4.8
million observations and 41 features [247]. The impact of
information leakage across millions of observations may be
lower than leakage across only 85 observations.
While there was information leakage in the Meningioma
study, its impact was far less significant than the apparent
label leakage that resulted from the feature selection
process:

“Next, the normalized abundances of all of the
metabolomic and lipidomic features (in both polarities)
were merged into one feature table in Python. Then, we
used the scikit-learn ExtraTreesClassifier feature selection
algorithm to sort all of the detected features based on their
ability to discriminate patients with grade II/III
meningiomas from grade I.” [245]

By preselecting the top 30 features using a supervised
classifier on all of the data, the label information of the entire
data set was leaked prior to any cross-validation or train-test
split. The data from these preselected features were
subjected to cross-validation to estimate the performance of

different classifiers. The preselection of features from the
entire data set means that any train-test split or cross-
validation will overestimate the performance of any classifier
used. When the label information is used on the entire data
set for feature selection, the selected features will be highly
correlated with the label. Since there are approximately 15
000 features that were used in this study, there is a very high
probability that at least 30 could be correlated with the label
purely by chance. The subsequent use of cross-validation or a
train-test split is useless.
Despite the classifier performance degradation expected
from information leakage that occurred during normalization
and imputation, I would still like to know how well a classifier
could perform if I removed the label leakage. Further, I
would like to show how to use XGBoost on this data.
The conditioned data is contained in a file called
metabolites_all.csv and is available on the Metabolights
repository with the raw data. It can be loaded and the label
converted into a factor:

metabolites <- read_csv(file.path("large-

data","metabolites_all.csv")) |>

 mutate(Class=as.factor(Class))

Following the basic ML pattern, I’ll first create the train/test
split specification using 75% of the data for training and 25%
for testing and stratifying on class.

set.seed(2112)

metabolite_data_split <- initial_split(metabolites,

prop = 0.75, strata=Class)

metabolite_data_split

<Training/Testing/Total>

<63/22/85>

Two data sets are created using the tidymodels split
specification:

metabolite_training_data <-

training(metabolite_data_split)

metabolite_testing_data <-

testing(metabolite_data_split)

Since the data were already conditioned, the recipe simply
associates the outcome with all the predictors and specifies
the training data:

metabolites_xgb_recipe <- recipe(Class ~ .,

data=metabolite_training_data)

The XGBoost model available via parsnip gives access to a
large number of hyperparameters that can be tuned to help
minimize overfitting.
Before performing the fit on the training set and evaluating
the test set, I will tune the hyperparameters using a two-step
approach described by Kuhn and Silge [134]. The two-step
process tunes all of the hyperparameters at once, allowing
for possible interactions, but does so in a reasonable (but not
necessarily small) amount of time.

metabolites_xgb_model <- boost_tree() |>

 set_engine("xgboost") |>

 set_mode("classification") |>

 set_args(trees = tune(),

 mtry = tune(),

 tree_depth = tune(),

 min_n = tune(),

 sample_size = tune(),

 loss_reduction = tune(),

 learn_rate = tune()

)

The model and the recipe are combined into a workflow, as
with the models used earlier:

metabolites_xgb_workflow <- workflow() |>

 add_model(metabolites_xgb_model) |>

 add_recipe(metabolites_xgb_recipe)

The hyperparameter tuning folds are constructed and
stratified based on the outcome variable: the Class column.

set.seed(1234)

metabolite_data_folds <- metabolite_training_data |>

 vfold_cv(strata = Class, v=5)

A sparse grid based on a Latin hypercube sampling [248] is
constructed using the grid_latin_ hypercube() function to
find the starting values for a Bayesian optimization algorithm
to perform the final tune. This two-step approach to
hyperparameter tuning will work for any machine learning
algorithm with multiple hyperparameters that need to be
tuned. I will use a grid size of 30 to give the tune_bayes() step
more samples to work with than when tuning only one or two
hyperparameters.

set.seed(6116)

xgb_grid <- grid_latin_hypercube(

 trees(),

 tree_depth(),

 min_n(),

 loss_reduction(),

 sample_size = sample_prop(),

 finalize(mtry(),

metabolite_training_data),

 learn_rate(),

 size = 30

)

I’m going to select the best model on the ROC AUC, so for
this step in the process, the only metric I need is roc_auc:

metabolite_xgb_metrics <- metric_set(roc_auc)

Now, find the initial values of all the hyperparameters by
averaging performance over the five folds. If the hardware
supports parallel processing, the control_grid() parameter
parallel_over will put each fold to be averaged on a separate
thread or worker and then combine them into an average.

set.seed(73)

metabolite_xgb_tune <- metabolites_xgb_workflow |>

 tune_grid(resamples = metabolite_data_folds,

 grid = xgb_grid,

 metrics = metabolite_xgb_metrics,

 control =

control_grid(parallel_over="resamples",

 save_pred = TRUE))

Since the mtry hyperparameter is the number or proportion
of predictors that will be sampled at each split, the value will
not be automatically extracted from the workflow object
using the extract_parameter_ set_dials() function. Unlike all

the other hyperparameters, mtry has to be finalized on the
training set for the next step in the tuning process:

bayes_param <- metabolites_xgb_workflow |>

 extract_parameter_set_dials() |>

 update(mtry = finalize(mtry(),

metabolite_training_data))

The final tuning step uses the tune_bayes() function to
iteratively search the parameter space for a local optimum of
the metrics. The algorithm is set to try up to 20 iterations, but
it will stop if additional iterations stop improving the metric.
Despite setting a random number seed, the Bayesian
optimization process is not deterministic and can produce
different results each time it is run.

set.seed(73)

xgb_tune_bayes <- metabolites_xgb_workflow |>

 tune_bayes(

 iter = 20,

 resamples = metabolite_data_folds,

 param_info = bayes_param,

 metrics = metabolite_xgb_metrics,

 initial = metabolite_xgb_tune,

 control = control_bayes(parallel_over="resamples",

 save_pred = TRUE)

)

To see how the results of the Bayesian hyperparameter
tuning process, the xgb_tune_bayes object can be plotted:

autoplot(xgb_tune_bayes)

Figure 7.17 shows that the tuning process found parameters
that can give good performance on the training data and that
tuning is important since some hyperparameter values result
in a classifier that is no better than flipping a coin (0.5

represents no skill). Like with the SVM tuning, I will select
the final hyperparameter set from the best model found by
tune_bayes() based on ROC AUC.

Figure 7.17 Performance measures for

hyperparameter values found using a Bayesian search

using the results of a Latin square search as starting

values.

metabolite_xgb_best <- select_best(xgb_tune_bayes,

metric = "roc_auc")

metabolite_xgb_best

A tibble: 1 x 8

mtry trees min_n tree_depth learn_rate

loss_reduction sample_size .config

<int> <int> <int> <int> <dbl>

<dbl> <dbl> <chr>

1 1693 1395 2 12 0.0544

0.00000244 0.911 Iter7

This model will use 1395 trees that are 12 nodes deep. The
final nodes have to have at least two observations on each
side of the last split, and the splits will be based on the best
separation that can be achieved from a feature selected from
1693 features selected at random. The model will use as
many as splits learned from the data.
Using cross-validation on the training set will overestimate
the classifier’s performance compared to the training set due
to the reuse of data between the cross-validation folds.
However, it is a useful step because if the classifier performs
poorly in cross-validation, it is definitely a bad model.

metabolites_xgb_workflow_final <-

metabolites_xgb_workflow |>

 finalize_workflow(metabolite_xgb_best)

Fit the training set folds with the best model finalized in the
final workflow:

set.seed(1661)

metabolites_cv_xgb_fit <-

metabolites_xgb_workflow_final |>

 fit_resamples(metabolite_data_folds,

 metrics=metric_set(accuracy,roc_auc),

 control=control_grid(save_pred=TRUE))

collect_metrics(metabolites_cv_xgb_fit)

A tibble: 2 x 6

.metric .estimator mean n std_err .config

<chr> <chr> <dbl> <int> <dbl> <chr>

1 accuracy binary 0.838 5 0.0518

Preprocessor1_Model1

2 roc_auc binary 0.904 5 0.0410

Preprocessor1_Model1

Using a five-fold cross-validation on the training set using the
final values of all the hyperparameters shows high
performance in terms of ROC AUC. Again, this level of
performance is not expected to hold up for the test data or
other new data, but it means that the tuned model is good
enough to take to the testing step:

metabolites_cv_xgb_pred <- metabolites_cv_xgb_fit |>

 collect_predictions()

metabolites_cv_xgb_roc <- metabolites_cv_xgb_pred |>

 roc_curve(`Class`, .pred_Group1)

autoplot(metabolites_cv_xgb_roc)

The ROC curve in Figure 7.18 suggests that even in cross-
validation, the model doesn’t show as much overfitting as
expected from the average ROC AUC. Now, the model’s
performance on the test data can begin. I have to go back to
collecting both accuracy and roc_auc for the predictions to
include the predicted class. The roc_auc metric only collects
the class probabilities, not the class prediction, which is
needed for the confusion matrix.

Figure 7.18 The ROC curve computed from the cross-

validation results for the best model selected after

hyperparameter tuning. This estimate of performance

is based only on the training data, and new data

might perform worse, but this is the best that tuning

can achieve when cross-validation is employed.

metabolites_xgb_final_fit <-

metabolites_xgb_workflow_final |>

 last_fit(metabolite_data_split, metrics =

metric_set(accuracy,roc_auc))

The last_fit() function fits the model to the full training set
and then applies the model to make predictions on the test
set.

collect_metrics(metabolites_xgb_final_fit)

A tibble: 2 x 4

.metric .estimator .estimate .config

<chr> <chr> <dbl> <chr>

1 accuracy binary 0.682 Preprocessor1_Model1

2 roc_auc binary 0.783 Preprocessor1_Model1

As expected, the performance on the test set is lower than on
the training set. The confusion matrix from the test set shows
a problematic situation:

metabolites_xgb_conf_mat <- metabolites_xgb_final_fit

|>

 collect_predictions() |>

 conf_mat(Class, .pred_class)

metabolites_xgb_conf_mat

Truth

Prediction Group1 Group2

Group1 9 6

Group2 1 6

The confusion matrix shows that the classifier does a good
job of predicting Class I samples, while Class II/III samples
have a 50% chance of being called either Class I or Class
II/III.

metabolites_xgb_test_roc <- metabolites_xgb_final_fit

|>

 collect_predictions() |>

 roc_curve(Class, .pred_Group1)

autoplot(metabolites_xgb_test_roc)

The ROC curve in Figure 7.19 has a reasonable shape for a
test set of only 22 samples, but, as the confusion matrix
shows, the classifier is only modestly better than random,
and that is only due to its performance on Class I samples.

Figure 7.19 The ROC curve computed from the test

data using the best model selected from cross-

validation-based hyperparameter tuning.

metabolites_xgb_test_pr <- metabolites_xgb_final_fit |>

 collect_predictions() |>

 pr_curve(Class, .pred_Group1)

no_skill_xgb <-

sum(tidy(metabolites_xgb_conf_mat)$value[1:2]) /

 sum(tidy(metabolites_xgb_conf_mat)$value)

autoplot(metabolites_xgb_test_pr) +

 geom_hline(yintercept=no_skill_xgb,

linetype="dashed")

The precision-recall curve in Figure 7.20 has some of the
same characteristics of the logistic regression PR curve
shown in Figure 7.12. Like the logistic regression classifier,
the shape of the PR curve suggests that this classifier has
problems and is not likely to perform well on new data,
especially from Class II/III patients.

Figure 7.20 Precision-recall curve for the selected

model applied to the test data.

It appears from a straight reading of the methods section of
this study that the authors violated two key principles of
machine learning. The result was a classifier that appeared
to perform well. However, the performance appears
overstated, and the classification component of the study is
unlikely to be reproducible because of information and label
leakage.
While 85 patients might seem like a large number of biopsy
samples, it is tiny compared to the number of features that

were measured. There are almost 200 times as many features
as observations, which, on the face of it, seems like an
impossible classification task. I’ve already shown that
variable selection would be of no help since there are
possibly thousands of features randomly correlated with the
outcome variable. However, tree-based models like gradient
boosting and random forest models perform variable
selection automatically, and because of this aspect of tree-
based learners, the problem became tractable.
The design of tidymodels uses deeply nested objects. To get
the model from the last_fit() object, the workflow object has
to be extracted using the extract_workflow() function, and
then the model has to be extracted from the workflow using
the extract_fit_parsnip() function:

metabolites_xgb_final_model <-

metabolites_xgb_final_fit |>

 extract_workflow() |>

 extract_fit_parsnip()

The metabolites_xgb_final_model object is an XGBoost model
of the class _xgb.Booster, which can be passed to the vip()
function to extract the feature importance values directly
from the model fit to the training data:

xgb_var <- vip(metabolites_xgb_final_model,

num_features = 30)

print(xgb_var)

A quick look at the native XGBoost variable importance
measure in Figure 7.21, based on the use of variables in
splits, shows that a few compounds appear significant, and
the model seems to justify further follow-up on several of
these as potential biomarkers.

Figure 7.21 Feature importance for the top 30

metabolites using the native XGBoost importance

measure.

The compound described as having the highest variable
importance (an unidentified lipid) by Yazd et al. [245] made
it into the top 30 compounds ranked by variable importance
by XGBoost shown in Figure 7.21. Several other compounds
are also on both lists. However, the most significant
compound found by XGBoost was not even evaluated by Yazd
et al. since it was eliminated during the initial feature
selection step. It is entirely possible that the overlap between
the two top 30 lists is an artifact of the initial normalization
and imputation information leakage. It’s also possible,
although remote, that the initial classification used for

feature selection, a variation on the RF algorithm, managed
to avoid selecting features correlated by chance. However,
without a test set or cross-validation of the initial
classification, it is impossible to tell if the features used for
the classification part of the study were spurious or not.
While I can speculate about the conclusions of the machine
learning process, the approach used in the paper does not
represent one that is likely to generate reproducible results.

7.6.6 Other Machine Learning Algorithms

One of the key ideas behind tidymodels is that it harmonizes
the interface to a large number of data preparation methods
and a large number of models. As I’m writing, there are more
than 150 different machine learning models available in the
parsnip package, which can be used as I’ve described in this
chapter [249]. For example, Yazd et al. [245] tested multiple
algorithms, including random forests, decision trees, k-
nearest neighbors, Naïve Bayes (GaussianNB), logistic
regression, and support vector machines, all of which are
supported by parsnip.
Another important idea is that models of many types can be
combined. In RFs, deep trees that tend to overfit are built
from random subsets of the data. In the RF, all the learners
are of the same type, and it’s an ensemble of homogeneous

models. When different algorithms are used to generate
diversity and then combined, it’s an ensemble of
heterogeneous models.
It’s worth mentioning the models that are not in parsnip at
the time of writing. While neural network models are
available in parsnip, they are limited to three-layer networks,
or multilayer perceptrons. These network architectures allow
you to select the number of hidden nodes in the middle layer
but do not support multiple hidden layers. So-called deep

learning networks; therefore, require a completely different

framework, such as the keras, torch, or tensorflow all
available from CRAN. Deep learning algorithms have been
especially effective for image analysis tasks. I did not include
an imaging mass spectrometry example in this chapter.
However, deep learning algorithms could be applied to the
multidimensional data collected from mass spectra, collected
from spatial coordinates rather than the time coordinates
found in chromatography.
The parsnip package also does not support reinforcement

learning, in which examples are given to an agent trained
based on maximizing a reward function. Reinforcement
learning is a powerful tool and is available in R using the
ReinforcementLearning package, which is also available from
CRAN. Analyzing mass spectrometry data using deep
learning and other advanced algorithms requires more
theoretical background than I can provide here, but can be
found in Murphy’s Probabilistic Machine Learning books
[227, 228] and many others.

7.7 Explaining Machine Learning

Models

As machine learning models become more complex, it
becomes less apparent how the model works on a global
basis and, often, more importantly, why a specific
observation generated a predicted outcome. In this section, I
will discuss how to interpret machine learning models both at
the global level of the whole dataset and at the local level of a
single observation.

7.7.1 Global Variable Importance

For each of the algorithms discussed so far, I have shown
variable importance in terms of the average of the impact of

a variable across all observations. This type of measurement
is known as global explanation. Global explanations attempt
to answer the question: how does the trained model make

predictions? [235]. In logistic regression, no other
explanation is needed beyond the model’s parameters since
they represent the slopes of lines in a linear model. However,
in the SVM example, since a kernel function was applied as
part of the model, the model coefficients only tell how
important a feature is to the overall model since a hidden
nonlinear kernel function is applied to inputs before
prediction. In the case of the trees, I didn’t even bother to
plot the trees themselves because the best model used more
than 1000 three-level trees. Since each tree has seven split
points, the model has over 7000 parameters that were fit
from the data. In that case, looking at the parameters
provides no insight into how the model works. However, in
the case of tree-based models, you can look at all the nodes,
measure which features were used for the splits and how
effective they were in performing correct assignments, and
use those to estimate the global variable importance for each
input parameter. In the case of the metabolite experiment,
only the highest impact variables are useful for a global
explanation.

7.7.2 Explaining Machine Learning Outcomes for

Individual Examples

The global explanation is often not enough, especially when
working with people, in this case, cancer patients. The global
explanation does not tell a specific patient why they were
predicted to have Class I rather than Class II/III meningioma.
A more powerful local explainer is needed for that
explanation. I introduced the concept of SHAP at the end of
Section 7.6.4. Now, I will show how SHAP can be used to
explain specific observations.

7.7.2.1 Local SHAP Explanations

First, I will look at how the model used the features to
explain specific instances of the testing data. I’ll pick
examples from the test data representing each confusion
matrix quadrant. Test data elements 1 and 11 are correctly
called examples from Group1 and Group2. Test data element
13 is a Group1 observation that was miscalled Group2, and
element 3 is a Group2 observation miscalled Group1. By
looking at the variable importance for the correct calls, you
can see if there are specific compounds that drive specific
calls. Since the global variable importance is an average over
all instances, it can mask the importance of variables in
specific instances.

metabolites_xgb_final_fit |>

 collect_predictions() |>

 dplyr::slice(c(1,11,13,3)) |>

 dplyr::select(-id,-.config)

A tibble: 4 x 5

.pred_class .pred_Group1 .pred_Group2 .row Class

<fct> <dbl> <dbl> <int> <fct>

1 Group1 0.826 0.174 4 Group1

2 Group2 0.0828 0.917 44 Group2

3 Group1 0.793 0.207 56 Group2

4 Group2 0.264 0.736 13 Group1

To use treeshap(), the test data must be prepared as a
matrix, and the class label Class must be removed.

metabolite_explain_data <- metabolite_testing_data |>

 select(-Class) |>

 as.matrix()

The treeshap package uses what the authors call a unified
model, which can be used for any tree-based algorithm. The
tree model metabolites_xgb_final_model The unified model is

then used to compute Shapley values with treeshap(), which
can then be prepared for visualization with shapviz().

unified <- unify(metabolites_xgb_final_model$fit,

metabolite_explain_data)

xgb_shap_values <- treeshap(unified,

metabolite_explain_data, verbose=FALSE)

xgb_shap <- shapviz(xgb_shap_values, X =

metabolite_testing_data)

p_force_sample_1 <- sv_force(xgb_shap, row_id=1,

bar_label_size=2.5) +

 ggtitle(label="Correct Prediction Class I")

p_force_sample_11 <- sv_force(xgb_shap, row_id=11,

bar_label_size=2.5) +

 ggtitle(label="Correct Prediction Class II/III")

p_correct <- ggarrange(p_force_sample_1,

p_force_sample_11,

 ncol = 1, nrow = 2,

 labels = c("A", "B"))

print(p_correct)

Figure 7.22 shows two correct calls from Class I and II/III.
One observation is that in both cases, some small amount of
importance comes from all the features in the model. These
small values combine to be the most significant force in
calling the observation a member of one or the other class.
Since all the features were normalized and centered, the
expected value is zero, which is another way of saying
that the column means are all zero. The output of the SHAP
algorithm is shown as , and if it is positive, the
observation is called Class I. If it is negative, the observation
is called Class II/III.

Figure 7.22 Force plots using SHAP values that show

which features drove the prediction toward the

correct class for (a) Class I and (b) Class II/III.

The force plot in Figure 7.22 shows that several compounds
have levels (normalized peak areas) that are higher in one
class than another and contribute to the observations’
classification. The positive and negative forces (around a
mean of zero) suggest following up on any compound that
rises above the level where it would be grouped with the rest
of the features.

p_force_sample_3 <- sv_force(xgb_shap, row_id=3,

bar_label_size=2.5) +

 ggtitle(label="Class I Predicted as Class II/III")

p_force_sample_13 <- sv_force(xgb_shap, row_id=13,

bar_label_size=2.5)+

 ggtitle(label="Class II/III Predicted as Class I",

)

p_incorrect <- ggarrange(p_force_sample_3,

p_force_sample_13,

 ncol = 1, nrow = 2,

 labels = c("A", "B"))

print(p_incorrect)

An sample that was actually in Class I but predicted to be
Class II/III (Figure 7.23a) shows that the levels of several
compounds were so extreme that even without the
contribution of the minor features, the observation would
have been called Class II/III. In debugging a model of this
type, plot (a) suggests looking at any call where the
compound that forced the call in the wrong direction is one
of the ones shown in the plot. The same thing is true, for
another sample (Figure 7.23b). Even without the low-
importance features, the responses from three compounds
would have pushed this observation into the Class I category.

Figure 7.23 Force plots using SHAP values that show

which features drove the prediction toward the

incorrect class for (a) Class I predicted to be Class

II/II and (b) Class II/III predicted to be Class I.

It is encouraging, but not at all inevitable, that the highest
average variable significance compounds show up in the
force plots as primary drivers. With the identity of the
specific patient for each test sample, it should now be
possible to look for the spectra in the correctly and
incorrectly classified cases and see what signals generated
the values used in the model. The additional guidance of the
interpretation of the model for specific observations means

that a more thorough understanding of the individual
observation and compounds can be developed by targeting
the compound evaluation to those that drive specific calls in
specific samples.

7.8 Summary

In this chapter, I have given a few examples of unsupervised
and supervised machine learning applications to mass
spectrometry. I have focused on practical approaches with
wide application. At the core of all, statistical learning is the
concept of distance. It shows up over and over again. When
grouping observations without knowledge of their true
grouping, the distance between observations is the only
available approach. There is a strong connection between
various distance measures and the dot product of the feature
vectors of the observation being compared. The dot product
is also at the core of the support vector machine algorithm,
which connects it with regression, and ultimately
unsupervised methods.
The choice of how to measure the difference between
predicted values from a model and the true values is
subjective, and ultimately distinguishes all the different
machine learning algorithms from one another. There is no
single distance measure (or error measure) that applies to all
data sets. So, while some algorithms are structured to handle
tabular data better than, for example, images, there is no one
best machine learning algorithm. In the absence of
assumptions about the data or the classification task, there is
no one best machine learning algorithm, which is called the
No Free Lunch Theorem (NFLT) [227, 250]. The NFLT is one
of the motivations behind the tidymodels package: to allow
different types of models to be tested within a consistent
framework that is compatible with the tidyverse principles of

clean, consistent, and reproducible data representation,
analysis, and code.
Finally, an appropriate word of warning and encouragement
from the great George Box: “All models are wrong, but some
models are useful” [251].

References

1 B. E. Winger, R. K. Julian, R. G. Cooks, et al., Surface
reactions and surface-induced dissociation of polyatomic
ions at self-assembled organic monolayer surfaces,
Journal of the American Chemical Society, vol. 113, no.
23, pp. 8967–8969, 1991.

2 R. K. Julian, H. P. Reiser, and R. Graham Cooks, Large
scale simulation of mass spectra recorded with a
quadrupole ion trap mass spectrometer, International

Journal of Mass Spectrometry and Ion Processes, vol.
123, no. 2, pp. 85–96, 1993.

3 R Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, manual, 2022. [Online].
Available: https://www.R-project.org/.

4 RStudio IDE. [Online]. Available: https://www.posit.co/
(Accessed 2024-07-10).

5 W. Huber, V. J. Carey, R. Gentleman, et al., Orchestrating
high-throughput genomic analysis with Bioconductor,
Nature Methods, vol. 12, no. 2, pp. 115–121, 2015.

6 M. Morgan and M. Ramos, BiocManager: Access the

Bioconductor Project Package Repository, 2024, R
package version 1.30.23. [Online]. Available:
https://bioconductor.github.io/BiocManager/.

7 M. Morgan, BiocManager: Access the Bioconductor
project package repository, manual, 2023. [Online].
Available: https://CRAN.R-
project.org/package=BiocManager.

https://www.r-project.org/
https://www.posit.co/
https://bioconductor.github.io/BiocManager/
https://cran.r-project.org/package=BiocManager

8 S. Neumann, L. Gatto, and Q. Kou, mzR: parser for

netCDF, mzXML and mzML and mzIdentML files (mass

spectrometry data), 2024, R package version 2.38.0.
[Online]. Available:
https://bioconductor.org/packages/mzR.

9 P. G. A. Pedrioli, J. K. Eng, R. Hubley, et al., A common
open representation of mass spectrometry data and its
application to proteomics research, Nature

Biotechnology, vol. 22, no. 11, pp. 1459–1466, 2004.

10 A. Keller, J. Eng, N. Zhang, et al., A uniform proteomics
MS/MS analysis platform utilizing open XML file
formats, Molecular Systems Biology, vol.1, no. 1, pp. 1–8,
2005.

11 D. Kessner, M. Chambers, R. Burke, et al.,
ProteoWizard: open source software for rapid proteomics
tools development, Bioinformatics, vol. 24, no. 21, pp.
2534–2536, 2008.

12 L. Martens, M. Chambers, M. Sturm, et al., mzML – A
community standard for mass spectrometry data,
Molecular & Cellular Proteomics, vol. 10, no. 1,
R110.000133, 2010.

13 M. C. Chambers, B. Maclean, R. Burke, et al., A cross-
platform toolkit for mass spectrometry and proteomics,
Nature Biotechnology, vol. 30, no. 10, pp. 918–920,
2012.

14 L. Gatto, S. Gibb, and J. Rainer, MSnbase, efficient and
elegant R-based processing and visualization of raw mass
spectrometry data, Journal of Proteome Research, vol.
20, no. 1, pp. 1063–1069, 2021.

https://bioconductor.org/packages/mzR

15 L. Gatto and K. S. Lilley, MSnbase-an R/Bioconductor
package for isobaric tagged mass spectrometry data
visualization, processing and quantitation,
Bioinformatics, vol. 28, no. 2, pp. 288–289, 2012.

16 J. Rainer, A. Vicini, L. Salzer, et al., A modular and
expandable ecosystem for metabolomics data annotation
in R, Metabolites, vol. 12, no. 2, p. 17, 2022.

17 L. Gatto, J. Rainer, and S. Gibb, MsBackendMgf: Mass

Spectrometry Data Backend for Mascot Generic Format

(mgf) Files, 2024, R package version 1.12.0. [Online].
Available:
https://bioconductor.org/packages/MsBackendMgf.

18 N. Steffen and J. Rainer, MsBackendMsp: Mass

Spectrometry Data Backend for NIST msp Files, 2024, R
package version 1.8.0. [Online]. Available:
https://bioconductor.org/packages/MsBackendMsp.

19 R. Ihaka and R. Gentleman, R: A language for data
analysis and graphics, Journal of Computational and

Graphical Statistics, vol. 5, no. 3, pp. 299–314, 1996.

20 R. A. Becker, J. M. Chambers, and A. R. Wilks, The New

S-language: A Programming Environment for Data

Analysis and Graphics, ser. The Wadsworth &
Brooks/Cole statistics/probability series. Pacific Grove,
CA: Wadsworth & Brooks/Cole, 1988.

21 G. Sussman and G. Steele, SCHEME: An Interpreter for

Extended Lambda Calculus, MIT Artificial Intelligence
Laboratory, Tech. Rep. AIM-349, 1975. [Online].
Available: https://dspace.mit.edu/handle/1721.1/5794
(Accessed 2022-05-18).

https://bioconductor.org/packages/MsBackendMgf
https://bioconductor.org/packages/MsBackendMsp
https://dspace.mit.edu/handle/1721.1/5794

22 D. E. Knuth, Literate Programming, ser. CSLI lecture
notes. Stanford, CA: Center for the Study of Language
and Information, 1992, no. 27.

23 K. Hornik and R. C. Team, Frequently Asked Questions

on R. The Comprehensive R Archive Network. 5.1: Which
add-on packages exist for R? [Online]. Available:
https://cran.r-project.org/doc/FAQ/R-FAQ.html#R-
Add_002dOn-Packages (Accessed 2022-05-17).

24 D. S. Wishart, D. Tzur, C. Knox, et al., HMDB: The
human metabolome database, Nucleic Acids Research,
vol. 35, no. Database issue, pp. D521–D526, 2007.

25 D. S. Wishart, C. Knox, A. C. Guo, et al., HMDB: A
knowledgebase for the human metabolome, Nucleic

Acids Research, vol. 37, no. Database issue, pp. D603–
D610, 2009.

26 D. S. Wishart, T. Jewison, A. C. Guo, et al., HMDB 3.0 –
The human metabolome database in 2013, Nucleic Acids

Research, vol. 41, no. Database issue, pp. D801–D807,
2013.

27 D. S. Wishart, Y. D. Feunang, A. Marcu, et al., HMDB
4.0: The human metabolome database for 2018, Nucleic

Acids Research, vol. 46, no. D1, pp. D608–D617, 2018.

28 D. S. Wishart, A. Guo, E. Oler, et al., HMDB 5.0: The
human metabolome database for 2022, Nucleic Acids

Research, vol. 50, no. D1, pp. D622–D631, 2022.

29 H. Wickham, Advanced R, 2e. Boca Raton: CRC
Press/Taylor and Francis Group, 2019.

30 H. Wickham, M. Çetinkaya Rundel, and G. Grolemund, R
for Data Science: Import, Tidy, Transform, Visualize, and

https://cran.r-project.org/doc/FAQ/R-FAQ.html#R-Add_002dOn-Packages

Model Data, 2e. Sebastopol, CA: O’Reilly Media, Inc.,
2023.

31 R for Data Science. [Online]. Available:
https://r4ds.had.co.nz/ (Accessed 2022-06-21).

32 Color Universal Design (CUD)/Colorblind Barrier Free.
[Online]. Available: https://jfly.uni-koeln.de/color/
(Accessed 2024-02-25).

33 L. Wilkinson and G. Wills, The Grammar of Graphics, 2e,
ser. Statistics and computing. New York: Springer, 2005.

34 W. Hadley, ggplot2. New York, NY: Springer Science +
Business Media, LLC, 2016.

35 W. Chang, R Graphics Cookbook: Practical Recipes for

Visualizing Data, 2e. Beijing, Boston: O’Reilly, 2018.

36 K. Healy, Data Visualization: A Practical Introduction.
Princeton, NJ: Princeton University Press, 2018.

37 R. C. Gentleman, V. J. Carey, D. M. Bates, et al.,
Bioconductor: open software development for
computational biology and bioinformatics, Genome

Biology, vol. 5, no. 10, p. R80, 2004.

38 J. M. Chambers, Software for Data Analysis:

Programming with R, ser. Statistics and Computing. New
York, NY: Springer, 2010.

39 Bioconductor – BiocViews. [Online]. Available:
https://www.bioconductor.org/packages/release/BiocVie
ws.html (Accessed 2022-07-08).

40 C. Gandrud, Reproducible Research with R and RStudio,
3e, ser. The R series. Boca Raton, FL: CRC Press, 2020.

https://r4ds.had.co.nz/
https://jfly.uni-koeln.de/color/
https://www.bioconductor.org/packages/release/BiocViews.html

41 What is AnVIL? [Online]. Available:
https://anvilproject.org/overview (Accessed 2022-07-12).

42 Y. Xie, Dynamic Documents with R and Knitr, 2e. Boca
Raton: CRC Press/Taylor & Francis, 2015.

43 J. Gruber, Markdown, 2004. [Online]. Available:
https://daringfireball.net/projects/markdown/ (Accessed
2022-07-13).

44 Welcome to MassIVE. [Online]. Available:
https://massive.ucsd.edu (Accessed 2021-10-31).

45 D. R. M. Smith, A. R. Uria, E. J. N. Helfrich, et al., An
unusual Flavin-dependent halogenase from the
metagenome of the marine sponge Theonella swinhoei

WA, ACS Chemical Biology, vol. 12, no. 5, pp. 1281–
1287, 2017.

46 Relational database, 2024, page Version ID:
1217554613. [Online]. Available:
https://en.wikipedia.org/w/index.php?
title=Relational_database&oldid=1217554613 (Accessed
2024-07-02).

47 E. Jones, S. Harden, and M. J. Crawley, The R Book, 3e.
Hoboken, NJ: Wiley, 2023.

48 H. Xu and M. A. Freitas, A dynamic noise level
algorithm for spectral screening of peptide MS/MS
spectra, BMC Bioinformatics, vol. 11, no. 1, p. 436, 2010.

49 Pandoc. [Online]. Available: https://pandoc.org/
(Accessed 2024-06-18).

50 Unidata | NetCDF. [Online]. Available:
https://www.unidata.ucar.edu/software/netcdf/
(Accessed 2022-08-30).

https://anvilproject.org/overview
https://daringfireball.net/projects/markdown/
https://massive.ucsd.edu/
https://en.wikipedia.org/w/index.php?title=Relational_database&oldid=1217554613
https://pandoc.org/
https://www.unidata.ucar.edu/software/netcdf/

51 The HDF Group – ensuring long-term access and
usability of HDF data and supporting users of HDF
technologies. [Online]. Available:
https://www.hdfgroup.org/ (Accessed 2022-08-30).

52 openspecs office [MS-XLS]: Excel Binary File Format
(.xls) Structure. [Online]. Available:
https://docs.microsoft.com/en-
us/openspecs/office_file_formats/ms-xls/cd03cb5f-ca02-
4934-a391-bb674cb8aa06 (Accessed 2022-08-25).

53 openspecs office, [MS-XLSX]: Excel (.xlsx) Extensions to
the Office Open XML Spreadsheet ML File Format.
[Online]. Available: https://docs.microsoft.com/en-
us/openspecs/office_standards/ms-xlsx/2c5dee00-eff2-
4b22-92b6-0738acd4475e (Accessed 2022-08-25).

54 E. W. Deutsch, File formats commonly used in mass
spectrometry proteomics, Molecular & Cellular

Proteomics, vol. 11, no. 12, pp. 1612–1621, 2012.

55 C. F. Taylor, N. W. Paton, K. S. Lilley, et al., The
minimum information about a proteomics experiment
(MIAPE), Nature Biotechnology, vol. 25, no. 8, pp. 887–
893, 2007.

56 P.-A. Binz, R. Barkovich, R. C. Beavis, et al., Guidelines
for reporting the use of mass spectrometry informatics in
proteomics, Nature Biotechnology, vol. 26, no. 8, p. 862,
2008.

57 A. R. Jones, K. Carroll, D. Knight, et al., Guidelines for
reporting the use of column chromatography in
proteomics, Nature Biotechnology, vol. 28, no. 7, p. 654,
2010.

58 P. J. Domann, S. Akashi, C. Barbas, et al., Guidelines for
reporting the use of capillary electrophoresis in

https://www.hdfgroup.org/
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/cd03cb5f-ca02-4934-a391-bb674cb8aa06
https://docs.microsoft.com/en-us/openspecs/office_standards/ms-xlsx/2c5dee00-eff2-4b22-92b6-0738acd4475e

proteomics, Nature Biotechnology, vol. 28, no. 7, pp.
654–655, 2010.

59 F. Gibson, L. Anderson, G. Babnigg, et al., Guidelines
for reporting the use of gel electrophoresis in
proteomics, Nature Biotechnology, vol. 26, no. 8, pp.
863–864, 2008.

60 S. Martínez-Bartolomé, E. W. Deutsch, P.-A. Binz, et al.,
Guidelines for reporting quantitative mass spectrometry
based experiments in proteomics, Journal of Proteomics,
vol. 95, pp. 84–88, 2013.

61 L. Martens, M. Chambers, M. Sturm, et al., mzML – A
community standard for mass spectrometry data,
Molecular & Cellular Proteomics, vol. 10, no. 1, p.
R110.000133, 2011.

62 F. Gibson, C. Hoogland, S. Martinez-Bartolomé, et al.,
The gel electrophoresis markup language (GelML) from
the proteomics standards initiative, PROTEOMICS, vol.
10, no. 17, pp. 3073–3081, 2010,
_eprint:https://onlinelibrary.wiley.com/doi/pdf/10.1002/
pmic.201000120.

63 ISA commons | Welcome. [Online]. Available:
https://www.isacommons.org/ (Accessed 2022-09-09).

64 S.-A. Sansone, P. Rocca-Serra, D. Field, et al., Toward
interoperable bioscience data, Nature Genetics, vol. 44,
no. 2, pp. 121–126, 2012.

65 ISA Model and Serialization Specifications – ISA Model
and Serialization Specifications 1.0 documentation.
[Online]. Available: https://isa-
specs.readthedocs.io/en/latest/ (Accessed 2022-10-03).

https://onlinelibrary.wiley.com/doi/pdf/10.1002/pmic.201000120
https://www.isacommons.org/
https://isa-specs.readthedocs.io/en/latest/

66 P. Rocca-Serra, M. Brandizi, E. Maguire, et al., ISA
software suite: supporting standards-compliant
experimental annotation and enabling curation at the
community level, Bioinformatics, vol. 26, no. 18, pp.
2354–2356, 2010.

67 S.-A. Sansone, P. Rocca-Serra, A. Gonzalez-Beltran, et
al., Isa Model And Serialization Specifications 1.0, 2016,
publisher: Zenodo. [Online]. Available:
https://zenodo.org/record/163640 (Accessed 2022-10-
03).

68 F. Team, FAIRsharing record for: Investigation Study
Assay JSON, 2018. [Online]. Available:
https://fairsharing.org/FAIRsharing.yhLgTV (Accessed
2022-10-03).

69 A. González-Beltrán, S. Neumann, E. Maguire, et al.,
The Risa R/Bioconductor package: integrative data
analysis from experimental metadata and back again,
BMC Bioinformatics, vol. 15 Suppl 1, p. S11, 2014.

70 D. Johnson, D. Batista, K. Cochrane, et al., ISA API: An
open platform for interoperable life science experimental
metadata, GigaScience, vol. 10, no. 9, p. giab060, 2021.

71 N. S. Kale, K. Haug, P. Conesa, et al., MetaboLights: An
open-access database repository for metabolomics data,
Current Protocols in Bioinformatics, vol. 53, pp. 14.13.1–
14.13.18, 2016.

72 J. Guo and T. Huan, Comparison of full-scan, data-
dependent, and data-independent acquisition modes in
liquid chromatography-mass spectrometry-based
untargeted metabolomics, Analytical Chemistry, vol. 92,
no. 12, pp. 8072–8080, 2020.

https://zenodo.org/record/163640
https://fairsharing.org/FAIRsharing.yhLgTV

73 A. Gonzalez-Beltran, A. Kauffmann, S. Neumann, et al.,
Risa: Converting experimental metadata from ISA-tab
into Bioconductor data structures, 2023, R package
version 1.44.0. [Online]. Available:
https://bioconductor.org/packages/Risa.

74 A. González-Beltrán, S. Neumann, E. Maguire, et al.,
The Risa R/Bioconductor package: integrative data
analysis from experimental metadata and back again,
BMC Bioinformatics, vol. 15, p. (Suppl 1):S11, 2014.
[Online]. Available:
http://www.biomedcentral.com/1471-2105/15/S1/S11

75 R. Jackson, N. Matentzoglu, J. A. Overton, et al., OBO
Foundry in 2021: operationalizing open data principles
to evaluate ontologies, Database, vol. 2021, p. baab069,
2021.

76 M. J. Dürst and M. Suignard, Internationalized Resource
Identifiers (IRIs), Internet Engineering Task Force,
Request for Comments RFC 3987, 2005, num Pages: 46.
[Online]. Available:
https://datatracker.ietf.org/doc/rfc3987 (Accessed 2022-
12-06).

77 V. Sharma, J. Eckels, B. Schilling, et al., Panorama
public: a public repository for quantitative data sets
processed in Skyline*, Molecular & Cellular Proteomics,
vol. 17, no. 6, pp. 1239–1244, 2018.

78 Panorama Dashboard: /Panorama Public/2018/gRED –
Automated QC of targeted MS data. [Online]. Available:
https://panoramaweb.org/targetedmsqc.url (Accessed
2022-10-04).

79 S. Toghi Eshghi, P. Auger, and W. R. Mathews, Quality
assessment and interference detection in targeted mass

https://bioconductor.org/packages/Risa
http://www.biomedcentral.com/1471-2105/15/S1/S11
https://datatracker.ietf.org/doc/rfc3987
https://panoramaweb.org/targetedmsqc.url

spectrometry data using machine learning, Clinical

Proteomics, vol. 15, no. 1, p. 33, 2018.

80 D. Temple Lang, XML: Tools for parsing and generating
XML within R and S-Plus, 2024, R package version 3.99-
0.17. [Online]. Available:
https://www.omegahat.net/RSXML/.

81 H. Wickham, J. Hester, and J. Ooms, xml2: Parse XML,
2023, R package version 1.3.6. [Online]. Available:
https://xml2.r-lib.org/.

82 ProteoWizard/pwiz: The ProteoWizard Library is a set of
software libraries and tools for rapid development of
mass spectrometry and proteomic data analysis software.
[Online]. Available:
https://github.com/ProteoWizard/pwiz (Accessed 2022-
10-13).

83 pwiz/pwiz_tools/Skyline/TestUtil/Schemas at master ·
ProteoWizard/pwiz. [Online]. Available:
https://github.com/ProteoWizard/pwiz/tree/master/pwiz
_tools/Skyline/TestUtil/Schemas (Accessed 2022-10-13).

84 xpath cover page – W3C. [Online]. Available:
https://www.w3.org/TR/xpath/ (Accessed 2022-10-19).

85 Data files. [Online]. Available:
https://www.ddbj.nig.ac.jp/metabobank/datafile-e.html
(Accessed 2024-03-29).

86 MetaboBank. [Online]. Available:
https://mb2.ddbj.nig.ac.jp/ (Accessed 2024-03-29).

87 T. Ara, Y. Kodama, T. Tokimatsu, et al., DDBJ update in
2023: the MetaboBank for metabolomics data and
associated metadata, Nucleic Acids Research, vol. 52, no.
D1, pp. D67–D71, 2024.

https://www.omegahat.net/RSXML/
https://xml2.r-lib.org/
https://github.com/ProteoWizard/pwiz
https://github.com/ProteoWizard/pwiz/tree/master/pwiz_tools/Skyline/TestUtil/Schemas
https://www.w3.org/TR/xpath/
https://www.ddbj.nig.ac.jp/metabobank/datafile-e.html
https://mb2.ddbj.nig.ac.jp/

88 C. Ubaida-Mohien, S. Spendiff, A. Lyashkov, et al.,
Unbiased proteomics, histochemistry, and mitochondrial
DNA copy number reveal better mitochondrial health in
muscle of high-functioning octogenarians, eLife, vol. 11,
p. e74335, 2022.

89 TMT10plexTM Isobaric Label Reagents and Kits.
[Online]. Available:
https://www.thermofisher.com/order/catalog/product/90
110 (Accessed 2023-01-26).

90 Beta-Galactosidase Digest. [Online]. Available:
https://us-store.sciex.com/USD/-/Beta-Galactosidase-
Digest-zid4465938 (Accessed 2023-01-25).

91 C. Ubaida-Mohien, M. Gonzalez-Freire, A. Lyashkov, et
al., Physical activity associated proteomics of skeletal
muscle: being physically active in daily life may protect
skeletal muscle from aging, Frontiers in Physiology, vol.
10, p. 312, 2019.

92 cRAP protein sequences. [Online]. Available:
https://www.thegpm.org/crap/ (Accessed 2023-01-25).

93 M. Wang, J. J. Carver, V. V. Phelan, et al., Sharing and
community curation of mass spectrometry data with
global natural products social molecular networking,
Nature Biotechnology, vol. 34, no. 8, pp. 828–837, 2016.

94 Mass Spectrometry File Conversion – GNPS
Documentation. [Online]. Available: https://ccms-
ucsd.github.io/GNPSDocumentation/fileconversion/#con
version-with-msconvert (Accessed 2023-02-05).

95 ProteoWizard/pwiz, Jan. 2023. [Online]. Available:
https://github.com/ProteoWizard/pwiz (Accessed 2023-
02-05).

https://www.thermofisher.com/order/catalog/product/90110
https://us-store.sciex.com/USD/-/Beta-Galactosidase-Digest-zid4465938
https://www.thegpm.org/crap/
https://ccms-ucsd.github.io/GNPSDocumentation/fileconversion/#conversion-with-msconvert
https://github.com/ProteoWizard/pwiz

96 Join the GNPS community – GNPS Documentation.
[Online]. Available: https://ccms-
ucsd.github.io/GNPSDocumentation/gnps_community/
(Accessed 2023-02-05).

97 R. S. McDonald and P. A. Wilks, JCAMP-DX: A Standard
form for exchange of infrared spectra in computer
readable form, Applied Spectroscopy, vol. 42, no. 1, pp.
151–162, 1988.

98 P. Lampen, H. Hillig, A. N. Davies, et al., JCAMP-DX for
mass spectrometry, Applied Spectroscopy, vol. 48, no.
12, pp. 1545–1552, 1994.

99 Mascot database search | Data file format for mass
spectrometry peak lists. [Online]. Available:
http://www.matrixscience.com/help/data_file_help.html
(Accessed 2023-02-05).

100 J. E. F. Friedl, Mastering Regular Expressions, 3e.
Sebastapol, CA: O’Reilly, 2006.

101 E. Gamma, R. Helm, R. Johnson, et al., Design

Patterns: Elements of Reusable Object-Oriented

Software, 1st ed. Addison-Wesley Professional. Part of
the Addison-Wesley Professional Computing Series,
1994.

102 MSnbase: MS data processing, visualisation and
quantification. [Online]. Available:
https://www.bioconductor.org/packages/release/bioc/vi
gnettes/MSnbase/inst/doc/v01-MSnbase-demo.html
(Accessed 2023-05-31).

103 D. Sarkar, Lattice: Multivariate Data Visualization with

R, ser. Use R!. New York: Springer, 2008.

https://ccms-ucsd.github.io/GNPSDocumentation/gnps_community/
http://www.matrixscience.com/help/data_file_help.html
https://www.bioconductor.org/packages/release/bioc/vignettes/MSnbase/inst/doc/v01-MSnbase-demo.html

104 R. Tautenhahn, C. Böttcher, and S. Neumann, Highly
sensitive feature detection for high resolution LC/MS,
BMC Bioinformatics, vol. 9, p. 504, 2008.

105 M. Kuhn and H. Wickham, tidymodels: Easily install
and load the tidymodels packages, 2024, R package
version 1.2.0. [Online]. Available:
https://tidymodels.tidymodels.org.

106 M. A. Grayson, (ed.), Measuring Mass: From Positive

Rays to Proteins. Philadelphia: Chemical Heritage Press,
2002.

107 PubChem, Proton. [Online]. Available:
https://pubchem.ncbi.nlm.nih.gov/compound/5460653
(Accessed 2023-07-06).

108 T. Kind and O. Fiehn, Seven golden rules for heuristic
filtering of molecular formulas obtained by accurate
mass spectrometry, BMC Bioinformatics, vol. 8, p. 105,
2007.

109 J. R. D. Laeter, J. K. Böhlke, P. D. Bièvre, et al., Atomic
weights of the elements. Review 2000 (IUPAC Technical
Report), Pure and Applied Chemistry, vol. 75, no. 6, pp.
683–800, 2003.

110 J. R. D. Laeter, J. K. Böhlke, P. D. Bièvre, et al., Errata:
Atomic weights of the elements: Review 2000 (IUPAC
Technical Report), Pure and Applied Chemistry, vol. 81,
no. 8, pp. 1535–1536, 2009.

111 T. Prohaska, J. Irrgeher, J. Benefield, et al., Standard
atomic weights of the elements 2021 (IUPAC Technical
Report), Pure and Applied Chemistry, vol. 94, no. 5, pp.
573–600, 2022.

https://tidymodels.tidymodels.org/
https://pubchem.ncbi.nlm.nih.gov/compound/5460653

112 A. L. Rockwood and M. Palmblad, Isotopic
distributions, In: Mass Spectrometry Data Analysis in

Proteomics, (R. Matthiesen, ed.). New York, NY:
Springer New York, vol. 2051, pp. 79–114, 2020.

113 H. Budzikiewicz and R. D. Grigsby, Mass spectrometry
and isotopes: A century of research and discussion, Mass

Spectrometry Reviews, vol. 25, no. 1, pp. 146–157, 2006.

114 J. J. Thomson, Bakerian Lecture: Rays of positive
electricity, Proceedings of the Royal Society of London.

Series A, Containing Papers of a Mathematical and

Physical Character, vol. 89, no. 607, pp. 1–20, 1913.

115 F. Aston, CXIX. The mass-spectra of chemical
elements. – Part VI. Accelerated anode rays continued,
The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science, vol. 49, no. 294, pp.
1191–1201, 1925.

116 D. Valkenborg, I. Mertens, F. Lemière, et al., The
isotopic distribution conundrum, Mass Spectrometry

Reviews, vol. 31, no. 1, pp. 96–109, 2012.

117 M. K. Łącki, M. Startek, D. Valkenborg, et al., IsoSpec:
Hyperfast fine structure calculator, Analytical Chemistry,
vol. 89, no. 6, pp. 3272–3277, 2017.

118 M. K. Łącki, D. Valkenborg, and M. P. Startek,
IsoSpec2: Ultrafast fine structure calculator, Analytical

Chemistry, vol. 92, no. 14, pp. 9472–9475, 2020.

119 S. Böcker and Z. Lipták, A fast and simple algorithm
for the money changing problem, Algorithmica, vol. 48,
no. 4, pp. 413–432, 2007.

120 S. Böcker, M. Letzel, Z. Lipták, et al., Decomposing
metabolomic isotope patterns, In: Proc. of Workshop on

Algorithms in Bioinformatics (WABI 2006), ser. Lect.
Notes Comput. Sci., vol. 4175. Berlin: Springer, pp. 12–
23, 2006.

121 S. Böcker, M. C. Letzel, Z. Lipták, et al., SIRIUS:
Decomposing isotope patterns for metabolite
identification†, Bioinformatics, vol. 25, no. 2, pp. 218–
224, 2009.

122 S. Böcker, Z. Lipták, M. Martin, et al., Decomp – from
interpreting mass spectrometry peaks to solving the
money changing problem, Bioinformatics, vol. 24, no. 4,
pp. 591–593, 2008.

123 Deprecate Rdisop in BioC and archive this repo.
[Online]. Available:
https://github.com/sneumann/Rdisop/issues/23
(Accessed 2023-07-17).

124 UCSD/CCMS – Spectrum Library. [Online]. Available:
https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.
jsp?SpectrumID=CCMSLIB00011429539#%7B%7D
(Accessed 2023-07-17).

125 N. Huang, M. M. Siegel, G. H. Kruppa, et al.,
Automation of a Fourier transform ion cyclotron
resonance mass spectrometer for acquisition, analysis,
and e-mailing of high-resolution exact-mass electrospray
ionization mass spectral data, Journal of the American

Society for Mass Spectrometry, vol. 10, no. 11, pp. 1166–
1173, 1999.

126 M. R. Blumer, C. H. Chang, E. Brayfindley, et al., Mass
spectrometry adduct calculator, Journal of chemical

https://github.com/sneumann/Rdisop/issues/23
https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00011429539#%7B%7D

information and modeling, vol. 61, no. 12, pp. 5721–
5725, 2021.

127 Z. Zhang, B. Yan, K. Liu, et al., Fragmentation
pathways of heroin-related alkaloids revealed by ion trap
and quadrupole time-of-flight tandem mass
spectrometry, Rapid Communications in Mass

Spectrometry, vol. 22, no. 18, pp. 2851–2862, 2008.

128 P. G. Hatcher, K. J. Dria, S. Kim, et al., Modern
analytical studies of humic substances, Soil Science, vol.
166, no. 11, pp. 770–794, 2001.

129 N. W. Green and E. M. Perdue, Fast graphically
inspired algorithm for assignment of molecular formulae
in ultrahigh resolution mass spectrometry, Analytical

Chemistry, vol. 87, no. 10, pp. 5086–5094, 2015.

130 S. K. Schum, L. E. Brown, and L. R. Mazzoleni,
MFAssignR: Molecular formula assignment software for
ultrahigh resolution mass spectrometry analysis of
environmental complex mixtures, Environmental

Research, vol. 191, p. 110114, 2020.

131 E. M. Perdue and N. W. Green, Isobaric molecular
formulae of C, H, and O: A view from the negative
quadrants of van Krevelen space, Analytical Chemistry,
vol. 87, no. 10, pp. 5079–5085, 2015.

132 M. J. Helf, B. W. Fox, A. B. Artyukhin, et al.,
Comparative metabolomics with Metaboseek reveals
functions of a conserved fat metabolism pathway in C.

elegans, Nature Communications, vol. 13, no. 1, p. 782,
2022.

133 M. J. Helf, mjhelf/MassTools: MassTools Version
0.2.12, 2021. [Online]. Available:

https://zenodo.org/record/5725620 (Accessed 2023-08-
08).

134 M. Kuhn and J. Silge, Tidy Modeling with R: A

Framework for Modeling in the Tidyverse, 1e, Beijing,
Boston, Farnham, Sebastopol, Tokyo: O’Reilly, 2022.

135 S. Couch, A. Bray, C. Ismay, et al., infer: An R package
for tidyverse-friendly statistical inference, Journal of

Open Source Software, vol. 6, no. 65, p. 3661, 2021.

136 C. Ismay and A. Y.-S. Kim, Statistical Inference via

Data Science: A ModernDive into R and the Tidyverse,
ser. Chapman & Hall/CRC the R Series. Boca Raton:
CRC Press/Taylor & Francis Group, 2020.

137 A. Downey, Probably overthinking it: There is only one
test! 2011. [Online]. Available:
http://allendowney.blogspot.com/2011/05/there-is-only-
one-test.html (Accessed 2023-10-05).

138 A. Downey, Probably overthinking it: There is still only
one test. [Online]. Available:
http://allendowney.blogspot.com/2016/06/there-is-still-
only-one-test.html (Accessed 2023-10-05).

139 B. Bolstad, R. Irizarry, M. Åstrand, et al., A comparison
of normalization methods for high density
oligonucleotide array data based on variance and bias,
Bioinformatics, vol. 19, no. 2, pp. 185–193, 2003.

140 B. Bolstad, preprocessCore: A collection of pre-
processing functions, manual, 2023. [Online]. Available:
https://bioconductor.org/packages/preprocessCore.

141 D. Thomas and A. Hunt, The Pragmatic Programmer:

Your Journey to Mastery, 2e, 20th anniversary edition.
Boston: Addison-Wesley, 2020.

https://zenodo.org/record/5725620
http://allendowney.blogspot.com/2011/05/there-is-only-one-test.html
http://allendowney.blogspot.com/2016/06/there-is-still-only-one-test.html
https://bioconductor.org/packages/preprocessCore

142 D. E. Knuth, Structured programming with go to
statements, ACM Computing Surveys, vol. 6, no. 4, pp.
261–301, 1974.

143 The Wrong Abstraction. [Online]. Available:
https://sandimetz.com/blog/2016/1/20/the-wrong-
abstraction (Accessed 2024-07-05).

144 MT-CO2 – Cytochrome c oxidase subunit 2 – Homo
sapiens (Human)|UniProtKB|UniProt. [Online]. Available:
https://www.uniprot.org/uniprotkb/P00403/entry
(Accessed 2023-10-06).

145 S. M. Herbrich, R. N. Cole, K. P. West, et al.,
Statistical inference from multiple iTRAQ experiments
without using common reference standards, Journal of

Proteome Research, vol. 12, no. 2, pp. 594–604, 2013.

146 K. Kammers, R. N. Cole, C. Tiengwe, et al., Detecting
significant changes in protein abundance, EuPA Open

Proteomics, vol. 7, pp. 11–19, 2015.

147 D. N. Perkins, D. J. C. Pappin, D. M. Creasy, et al.,
Probability-based protein identification by searching
sequence databases using mass spectrometry data,
ELECTROPHORESIS, vol. 20, no. 18, pp. 3551–3567,
1999.

148 Chapter 40: Signal processing, In: Handbook of

Chemometrics and Qualimetrics: Part B, ser. Data
Handling in Science and Technology (eds., B.
Vandeginste, D. Massart, L. Buydens, S. de Jong, P. Lewi,
and J. Smeyers-Verbeke) Amsterdam: Elsevier, vol. 20,
pp. 507–574, 1998.

149 K. H. Liland and B.-H. Mevik, baseline: Baseline
Correction of Spectra, 2023, R package version 1.3–5.

https://sandimetz.com/blog/2016/1/20/the-wrong-abstraction
https://www.uniprot.org/uniprotkb/P00403/entry

[Online]. Available:
https://github.com/khliland/baseline/.

150 K. H. Liland, T. Almøy, and B.-H. Mevik, Optimal
choice of baseline correction for multivariate calibration
of spectra, Applied Spectroscopy, vol. 64, no. 9, pp.
1007–1016, 2010.

151 P. H. C. Eilers, A perfect smoother, Analytical

Chemistry, vol. 75, no. 14, pp. 3631–3636, 2003.

152 P. H. C. Eilers, Parametric time warping, Analytical

Chemistry, vol. 76, no. 2, pp. 404–411, 2004.

153 P. H. C. Eilers and H. F. Boelens, Baseline correction
with asymmetric least squares smoothing, 2005.

154 E. Whittaker and G. Robinson, A method of graduation
based on probability. In: The Calculus of Observations:

An Introduction to Numerical Analysis. New York: Dover,
pp. 303–306, 1967.

155 Z.-M. Zhang, S. Chen, and Y.-Z. Liang, Baseline
correction using adaptive iteratively reweighted
penalized least squares, The Analyst, vol. 135, no. 5, pp.
1138–1146, 2010.

156 S.-J. Baek, A. Park, Y.-J. Ahn, et al., Baseline correction
using asymmetrically reweighted penalized least squares
smoothing, Analyst, vol. 140, no. 1, pp. 250–257, 2014.

157 A. Savitzky and M. J. E. Golay, Smoothing and
differentiation of data by simplified least squares
procedures. Analytical Chemistry, vol. 36, no. 8, pp.
1627–1639, 1964.

158 A. Felinger, Peak detection by derivatives. In: Data

Analysis and Signal Processing in Chromatography, ser.

https://github.com/khliland/baseline/

Data handling in science and technology. Amsterdam
[Netherlands]; New York: Elsevier, no. v. 21, pp. 185–
189, 1998.

159 C. Lanczos, Chapter 5: Data analysis. Section 5: The
difficulties of a difference table. In: Applied Analysis.
New York: Dover Publications, pp. 313–315, 1988.

160 T. H. Edwards and P. D. Willson, Digital least squares
smoothing of spectra, Applied Spectroscopy, vol. 28, no.
6, pp. 541–545, 1974.

161 C. G. Enke and T. A. Nieman, Signal-to-noise ratio
enhancement by least-squares polynomial smoothing,
Analytical Chemistry, vol. 48, no. 8, pp. 705A–712A,
1976.

162 R. N. Bracewell, The Fourier Transform and Its

Applications, 2e, ser. McGraw-Hill series in electrical
engineering. New York: McGraw-Hill, 1986.

163 C. Lanczos, Chapter 5: Data analysis. Section 11:
Smoothing in the large by Fouier analysis. In: Applied

Analysis. New York: Dover Publications, pp. 331–336,
1988.

164 T. B. Sprague, The graphic method of adjusting
mortality tables. – A description of its objects, and its
advantages as compared with other methods, and an
application of it to obtain a Graduated Mortality Table
from Mr. A. J. Finlaison’s Observations on the Mortality
of the Female Government Annuitants, 4 years and
upwards after purchase, Journal of the Institute of

Actuaries, vol. 26, no. 2, pp. 77–120, 1886.

165 S. S. Shapiro and M. B. Wilk, An analysis of variance
test for normality (complete samples), Biometrika, vol.

52, no. 3/4, p. 591, 1965.

166 J. P. Royston, “An extension of Shapiro and Wilk’s W
test for normality to large samples, Applied Statistics,
vol. 31, no. 2, p. 115, 1982.

167 K. M. Ramachandran and C. P. Tsokos, Categorical
data analysis and goodness-of-fit tests and applications,
In: Mathematical Statistics with Applications in R.
Elsevier, pp. 461–490, 2021.

168 P. Royston, Remark AS R94: A remark on algorithm AS
181: The W-test for normality, Applied Statistics, vol. 44,
no. 4, p. 547, 1995.

169 S. P. Millard, EnvStats: An R Package for

Environmental Statistics, 2e. New York, NY: Springer,
2013.

170 J. R. Michael and W. R. Schucany, Analysis of data
from censored samples, In: Goodness-of-fit Techniques,
ser. Statistics, textbooks and monographs (eds., R. B.
D’Agostino and M. A. Stephens). New York: M. Dekker,
no. vol. 68, pp. 461–496, 1986.

171 L. Hashimoto and R. Trussell, Evaluating water quality
data near the detection limit, Las Vegas, 1983.

172 R. J. Gilliom and D. R. Helsel, Estimation of
distributional parameters for censored trace level water
quality data: 1. Estimation techniques, Water Resources

Research, vol. 22, no. 2, pp. 135–146, 1986.

173 D. R. Helsel and R. J. Gilliom, Estimation of
distributional parameters for censored trace level water
quality data: 2. Verification and applications, Water

Resources Research, vol. 22, no. 2, pp. 147–155, 1986.

174 A. H. El-Shaarawi, Inferences about the mean from
censored water quality data, Water Resources Research,
vol. 25, no. 4, pp. 685–690, 1989.

175 D. R. Helsel and D. R. Helsel, Statistics for Censored

Environmental Data Using Minitab and R, 2e, ser. Wiley
series in statistics in practice. Hoboken, NJ: Wiley, 2012.

176 USEPA, Statistical analysis of groundwater monitoring
data at RDRA facilities: unified guidance, Office of
Resource Conservation and Recovery, Program
Implementation and Information Division, US
Environmental Protection Agency, Washington D.C.,
Tech. Rep. EPA-530-R-09-007, 2009.

177 P. Du, W. A. Kibbe, and S. M. Lin, Improved peak
detection in mass spectrum by incorporating continuous
wavelet transform-based pattern matching,
Bioinformatics, vol. 22, no. 17, pp. 2059–2065, 2006.

178 W. Zhang, J. Zhou, M. Yang, et al., Efficient mass
spectrometry peak detection by combining resolution
enhancement and image segmentation, Analytical

Letters, vol. 57, no. 8, pp. 1227–1240, 2023.

179 C. Bai, S. Xu, J. Tang, et al., A ‘shape-orientated’
algorithm employing an adapted Marr wavelet and shape
matching index improves the performance of continuous
wavelet transform for chromatographic peak detection
and quantification, Journal of Chromatography A, vol.
1673, p. 463086, 2022.

180 J. M. Gregoire, D. Dale, and R. B. Van Dover, A wavelet
transform algorithm for peak detection and application
to powder x-ray diffraction data, Review of Scientific

Instruments, vol. 82, no. 1, p. 015105, 2011.

181 S. V. Vaseghi, Advanced Digital Signal Processing and

Noise Reduction, 4e. Chichester, UK: Wiley, 2008.

182 J. O. Ramsay and B. W. Silverman, Functional Data

Analysis, 2e, ser. Springer series in statistics. New York:
Springer, 2005.

183 R. L. Eubank, Nonparametric Regression and Spline

Smoothing, 2e, ser. Statistics, textbooks and
monographs. New York: Marcel Dekker, no. v. 157, 1999.

184 T. Hastie, R. Tibshirani, and J. H. Friedman, The

Elements of Statistical Learning: Data Mining, Inference,

and Prediction, 2e, ser. Springer series in statistics. New
York, NY: Springer, 2009.

185 J. N. Morgan and J. A. Sonquist, Problems in the
analysis of survey data, and a proposal, Journal of the

American Statistical Association, vol. 58, no. 302, pp.
415–434, 1963.

186 J. W. Cooley and J. W. Tukey, An algorithm for the
machine calculation of complex Fourier series,
Mathematics of Computation, vol. 19, no. 90, pp. 297–
301, 1965.

187 M. Schmid, D. Rath, and U. Diebold, Why and how
savitzky–golay filters should be replaced, ACS

Measurement Science Au, vol. 2, no. 2, pp. 185–196,
2022.

188 A. Felinger, Data Analysis and Signal Processing in

Chromatography, ser. Data handling in science and
technology. Amsterdam [Netherlands]; New York:
Elsevier, no. v. 21, 1998.

189 C. Lanczos, Applied Analysis. New York: Dover
Publications, 1988.

190 F. Harris, On the use of windows for harmonic analysis
with the discrete Fourier transform, Proceedings of the

IEEE, vol. 66, no. 1, pp. 51–83, 1978.

191 J. Kaiser and R. Schafer, On the use of the I0-sinh
window for spectrum analysis, IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 28, no. 1,
pp. 105–107, 1980.

192 C. Lanczos, “Chapter 4: Quadrature Methods.” In:
Applied Analysis. New York: Dover Publications, pp. 379–
437, 1988.

193 M. Febrero-Bande and M. O. D. L. Fuente, Statistical
computing in functional data analysis: The R Package
fda.usc, Journal of Statistical Software, vol. 51, pp. 1–28,
2012.

194 W. N. Venables and B. D. Ripley, Modern Applied

Statistics with S, 4e, ser. Statistics and computing. New
York: Springer, 2002.

195 Padé approximant, 2024, page Version ID:
1205633365. [Online]. Available:
https://en.wikipedia.org/w/index.php?
title=Pad%C3%A9_approximant&oldid=1205633365
(Accessed 2024-02-19).

196 W. H. Press (ed.), Numerical Recipes: The Art of

Scientific Computing, 3e. Cambridge, UK; New York:
Cambridge University Press, 2007.

197 E. Pagliano, Z. Mester, and J. Meija, Calibration
graphs in isotope dilution mass spectrometry, Analytica

Chimica Acta, vol. 896, pp. 63–67, 2015.

198 J. Nocedal and S. J. Wright, Algorithms for non-linear
least-squares problems, In: Numerical Optimization, 2e,

https://en.wikipedia.org/w/index.php?title=Pad%C3%A9_approximant&oldid=1205633365

ser. Springer series in operations research. New York:
Springer, pp. 254–265, 2006. oCLC: ocm68629100.

199 R. C. Mittelhammer, G. G. Judge, and D. J. Miller,
Econometric Foundations, 1e. Cambridge: Cambridge
University Press, 2000.

200 tidymodels. [Online]. Available:
https://www.tidymodels.org/ (Accessed 2024-07-15).

201 M. Kuhn and J. Silge, Tidy modeling with R, 2023,
version 1.0.0. [Online]. Available: https://www.tmwr.org/
(Accessed 2024-03-08).

202 Tidymodels packages – tidymodels. [Online]. Available:
https://www.tidymodels.org/packages/ (Accessed 2024-
07-15).

203 M. Kuhn and K. Johnson, Feature Engineering and

Selection: A Practical Approach for Predictive Models.
Boca Raton, FL: CRC Press, 2020.

204 G. James, D. Witten, T. Hastie, et al., An Introduction

to Statistical Learning: With Applications in R, ser.
Springer texts in statistics. New York: Springer, no. 103,
2013.

205 H. Yang, Y. Zhou, Q. Luo, et al., L-leucine increases the
sensitivity of drug-resistant Salmonella to sarafloxacin by
stimulating central carbon metabolism and increasing
intracellular reactive oxygen species level, Frontiers in

Microbiology, vol. 14, 2023.

206 S. Pawley, M. Kuhn, and R. Jacques-Hamilton, colino:
Recipes steps for supervised filter-based feature
selection, manual, 2024. [Online]. Available:
https://stevenpawley.github.io/colino (Accessed 2024-
03-11).

https://www.tidymodels.org/
https://www.tmwr.org/
https://www.tidymodels.org/packages/
https://stevenpawley.github.io/colino

207 J. MacQueen, Some methods for classification and
analysis of multivariate observations, In: Proceedings of

the Fifth Berkeley Symposium on Mathematical Statistics

and Probability, Volume 1: Statistics. University of
California Press, vol. 5.1, pp. 281–298, 1967.

208 J. A. Hartigan and M. A. Wong, Algorithm AS 136: A K-
means clustering algorithm, Applied Statistics, vol. 28,
no. 1, p. 100, 1979.

209 E. Hvitfeldt and K. Bodwin, tidyclust: A common API to
clustering, manual, 2024. [Online]. Available:
https://CRAN.R-project.org/package=tidyclust (Accessed
2024-05-20).

210 L. R. Crawford and J. D. Morrison, Computer methods
in analytical mass spectrometry. Identification of an
unknown compound in a catalog, Analytical Chemistry,
vol. 40, no. 10, pp. 1464–1469, 1968.

211 F. W. McLafferty, Performance prediction and
evaluation of systems for computer identification of
spectra, Analytical Chemistry, vol. 49, no. 9, pp. 1441–
1443, 1977.

212 D. Bajusz, A. Rácz, and K. Héberger, Why is Tanimoto
index an appropriate choice for fingerprint-based
similarity calculations? Journal of Cheminformatics, vol.
7, no. 1, p. 20, 2015.

213 S. E. Stein and D. R. Scott, Optimization and testing of
mass spectral library search algorithms for compound
identification, Journal of the American Society for Mass

Spectrometry, vol. 5, no. 9, pp. 859–866, 1994.

214 K. X. Wan, I. Vidavsky, and M. L. Gross, Comparing
similar spectra: From similarity index to spectral

https://cran.r-project.org/package=tidyclust

contrast angle, Journal of the American Society for Mass

Spectrometry, vol. 13, no. 1, pp. 85–88, 2002.

215 Z. B. Alfassi, On the normalization of a mass spectrum
for comparison of two spectra, Journal of the American

Society for Mass Spectrometry, vol. 15, no. 3, pp. 385–
387, 2004.

216 H.-G. Drost, Philentropy: information theory and
distance quantification with R, Journal of Open Source

Software, vol. 3, no. 26, p. 765, 2018.

217 H. Horai, M. Arita, S. Kanaya, Y, et al., MassBank: a
public repository for sharing mass spectral data for life
sciences, Journal of Mass Spectrometry, vol. 45, no. 7,
pp. 703–714, 2010.

218 MassBank of North America. [Online]. Available:
https://mona.fiehnlab.ucdavis.edu/ (Accessed 2024-05-
02).

219 chemdata:nistlibs. [Online]. Available:
https://chemdata.nist.gov/dokuwiki/doku.php?
id=chemdata:nistlibs (Accessed 2024-05-09).

220 A. Cereto-Massagué, M. J. Ojeda, C. Valls, et al.,
Molecular fingerprint similarity search in virtual
screening. Methods, vol 71, pp. 58–63, 2015.

221 J. D. Holliday, N. Salim, M. Whittle, et al., Analysis and
display of the size dependence of chemical similarity
coefficients, Journal of Chemical Information and

Computer Sciences, vol. 43, no. 3, pp. 819–828, 2003.

222 A. Bender, J. L. Jenkins, J. Scheiber, et al., How similar
are similarity searching methods? A principal component
analysis of molecular descriptor space, Journal of

https://mona.fiehnlab.ucdavis.edu/
https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:nistlibs

Chemical Information and Modeling, vol. 49, no. 1, pp.
108–119, 2009.

223 G. T. Rasmussen and T. L. Isenhour, The evaluation of
mass spectral search algorithms, Journal of Chemical

Information and Computer Sciences, vol. 19, no. 3, pp.
179–186, 1979.

224 F. W. McLafferty, M.-Y. Zhang, D. B. Stauffer, et al.,
Comparison of algorithms and databases for matching
unknown mass spectra, Journal of the American Society

for Mass Spectrometry, vol. 9, no. 1, pp. 92–95, 1998.

225 Z. B. Alfassi, On the comparison of different tests for
identification of a compound from its mass spectrum,
Journal of the American Society for Mass Spectrometry,
vol. 14, no. 3, pp. 262–264, 2003.

226 T. Hastie, R. Tibshirani, and J. H. Friedman, Chapter 7:
Model assesment and selection. Section 7.3: The bias-
variance decomposition. In: The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, 2e,
ser. Springer series in statistics. New York, NY:
Springer, pp. 233–228, 2009

227 K. P. Murphy, Probabilistic Machine Learning: An

Introduction, ser. Adaptive computation and machine
learning. Cambridge, Massachusetts, London, England:
The MIT Press, 2022.

228 K. P. Murphy, Probabilistic Machine Learning:

Advanced Topics, ser. Adaptive computation and
machine learning. Cambridge, Massachusetts, London,
England: The MIT Press, 2023.

229 M. H. Kutner, C. Nachtsheim, and J. Neter, Applied

Linear Regression Models, 4e, Boston; New York:

McGraw-Hill/Irwin, 2004.

230 B. Greenwell, M. and B. Boehmke, C., Variable
Importance Plots – An Introduction to the vip Package,
The R Journal, vol. 12, no. 1, p. 343, 2020.

231 M. Mayer and D. Watson, kernelshap: Kernel SHAP,
manual, 2024. [Online]. Available: https://CRAN.R-
project.org/package=kernelshap.

232 S. M. Lundberg and S.-I. Lee, A unified approach to
interpreting model predictions, In: Advances in neural

information processing systems 30: 31st Annual

Conference on Neural Information Processing Systems

(NIPS 2017): Long Beach, California, USA, 4-9 December

2017 (eds., U. V. Luxburg, I. Guyon, S. Bengio, H.
Wallach, R. Fergus, S. V. N. Vishwanathan, R. Garnett,
and Neural Information Processing Systems Foundation),
Red Hook, NY: Curran Associates, Inc., pp. 4765–4774,
2018.

233 I. Covert and S.-I. Lee, Improving KernelSHAP:
Practical shapley value estimation using linear
regression, In: Proceedings of the 24th International

Conference on Artificial Intelligence and Statistics, ser.
Proceedings of machine learning research, (eds., A.
Banerjee and K. Fukumizu), vol. 130. PMLR, pp. 3457–
3465, 2021.

234 L. S. Shapley, A Value for N-Person Games. RAND
Corporation, 1952.

235 C. Molnar, Interpretable Machine Learning: A Guide

for Making Black Box Models Explainable. Victoria, BC:
Leanpub, 2020.

https://cran.r-project.org/package=kernelshap

236 K. Komisarczyk, P. Kozminski, S. Maksymiuk, et al.,
treeshap: Compute SHAP values for your tree-based
models using the ‘TreeSHAP’ algorithm, manual, 2024.
[Online]. Available: https://CRAN.R-
project.org/package=treeshap.

237 A. Karatzoglou, A. Smola, K. Hornik, et al., kernlab -
An S4 package for Kernel methods in R, Journal of

Statistical Software, vol. 11, pp. 1–20, 2004.

238 M. Mayer, shapviz: SHAP visualizations, manual, 2024.
[Online]. Available: https://CRAN.R-
project.org/package=shapviz.

239 Clinical and Laboratory Standards Institute (CLSI).
Liquid Chromatography-Mass Spectrometry Methods.
2nd CLSI guideline C62. Clinical and Laboratory
Standards Institute; 2022.

240 J. H. Friedman, Greedy function approximation: A
gradient boosting machine. The Annals of Statistics, vol.
29, no. 5, 2001.

241 P. Li, Robust logitboost and adaptive base class (ABC)
logitboost, In: Proceedings of the Twenty-Sixth

Conference on Uncertainty in Artificial Intelligence, ser.
UAI’10. Arlington, Virginia, USA: AUAI Press, pp. 302–
311, 2010.

242 T. Chen and C. Guestrin, XGBoost: A scalable tree
boosting system, In: Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 785–794, 2016, arXiv:
1603.02754. [Online]. Available:
http://arxiv.org/abs/1603.02754 (Accessed 2021-01-21).

https://cran.r-project.org/package=treeshap
https://cran.r-project.org/package=shapviz
http://arxiv.org/abs/1603.02754

243 G. Kunapuli, Ensemble Methods for Machine Learning.
Shelter Island, NY: Manning, 2023.

244 C. Adam-Bourdarios, G. Cowan, C. Germain-Renaud, et
al., The higgs machine learning challenge, Journal of

Physics: Conference Series, vol. 664, no. 7, p. 072015,
2015.

245 H. Safari Yazd, S. F. Bazargani, G. Fitzpatrick, et al.,
Metabolomic and lipidomic characterization of
meningioma grades using LC–HRMS and machine
learning, Journal of the American Society for Mass

Spectrometry, vol. 34, no. 10, pp. 2187–2198, 2023.

246 M. A. Bouke and A. Abdullah, An empirical study of
pattern leakage impact during data preprocessing on
machine learning-based intrusion detection models
reliability, Expert Systems with Applications, vol. 230, p.
120715, 2023.

247 R. C. Staudemeyer and C. W. Omlin, Extracting salient
features for network intrusion detection using machine
learning methods, South African Computer Journal, vol.
52, 2014.

248 M. D. McKay, R. J. Beckman, and W. J. Conover,
Comparison of three methods for selecting values of
input variables in the analysis of output from a computer
code, Technometrics, vol. 21, no. 2, pp. 239–245, 1979.

249 tidymodels – Search parsnip models. [Online].
Available:
https://www.tidymodels.org/find/parsnip/#models
(Accessed 2024-06-01).

250 R. O. Duda, P. E. Hart, and D. G. Stork, Pattern

Classification, 2e. New York: Wiley, 2001.

https://www.tidymodels.org/find/parsnip/#models

251 G. E. P. Box and N. R. Draper, Empirical Model-

Building and Response Surfaces, ser. Wiley series in
probability and mathematical statistics. Applied
probability and statistics. New York: Wiley, p. 424, 1987.

Index

Note: Page numbers followed by f refer to figures and t
refers to tables.

a

abs() function, 190
Accuracy, 267
Acquisition time, peak shape and, 152
Adjacent scans, comparing, 33f–34f

aes() function, 15
Aesthetic, ggplot, 26
Aggregation function, 24
all_numeric() function, 234
all_predictors() function, 243
Analog detectors, peak intensities in, 32
Analysis of variance (ANOVA), 126, 130–133
Apex index, 155, 187
Apex intensity, 154–155
Apex of peak

derivative method for finding, 163, 164f

wavelet method for finding, 183f

API, see Atmospheric pressure ionization
API (application programming interface), 42

APLDNDIGVSEATR control peptide
binning and regularization of data on, 88–101
comparing theoretical and centroided m/z values for, 88f,
87–88
evaluating m/z ions that overlap with, 102–106
extracted ion chromatogram of, 103f, 101–102
isotope abundance calculation for, 120f, 117–120
mass spectrum, 84f

monoisotopic mass calculation for, 114t, 114–115
profile data for, 86f, 84–87

Application programming interface (API), 42
Application-specific functions, 42
apply() function, 129
Area of peak

calibration with standards for, 209–225
for reaction monitoring, 110–112
normalized instrument response in, 208–209
numeric integration for, 208
quantification of, 155, 207–225

Arrange multiple plots, 118–120
arrange_plots() function, 247
Artifacts, 192

chromatographic, 102–106
as.factor() function, 238
as.tibble() function, 10

AsIs function, 213
Aston, F.W., 115
Asymmetric least squares baseline, 157f, 155–156
Atmospheric pressure ionization (API), 113, 114, 120
autoplot() function, 241
ggplot() object produced by, 241

Avoid Premature Abstraction principle, 135
Axis labels, 16, 28

b

Back edge of peak, 158f, 158–160
bake() function, 235

use for unsupervised learning, 235
bands parameter, kaiserord() function, 203–204
Base machine learning model, 265
Base peak chromatogram (BPC), 24
Base R, 5

conditional selection in, 32
customized plot() functions, 27
model formula in, 210
plotting data with, 13, 25f

reading binary files directly in, 42
Base64 encoding, 22
baseline package, 155
Baseline correction, 155–156

baseline.als method, 155
Basis systems, 189
Batch mode, 3
Batch number, extracting, 66
Batch similarity, 83f, 81–82
Bias, 256
Bias-Variance trade-off, 257f, 256, see Model complexity,
see Overfitting
bin() function

of Spectra package, 91, 250
bin_rt() function, 94
Binary file format, 42–43
Binning, 88–101

changing resolution for, 97–101
creating a vector from a spectrum by, 248
defined, 90
of m/z values, 91
of retention times, 92–94
plotting heatmaps from binned data, 94–101
uniform m/z, for spectral search, 249–250, 252f

Biobase package, 134
BiocGenerics package, 28
BiocManager package, xii, 17
install() function, 17

Bioconductor packages, xii, 17
essential packages, 17
features and samples in, 135
for computing isotope distributions, 115
for mass spectrometry data analysis, 17
for parsing XML files, 59
peak detection method favored by, 161
reading XML files with, 51
XML-specific packages, 22

BiocViews browser, 17
Biological variation, 142–149
Boolean vectors, 7
Boosted tree classifiers, see Ensemble methods, see also

Gradient boosting, see also Random forest, 272–287
Boosting, 273
Boostrap aggregation (bagging), 273
Boxcar filter, 193

analyzing, 193–197
Kaiser windowed sinc function vs., 205f, 205f, 204–206
Savitzky–Golay filter vs., 195f, 196f, 198f, 193–197

boxcar() function, 193

Boxplots
for paired t-tests, 150f, 148–149
of normalized intensities for COX2 reporters, 147f, 146
of raw intensity of internal control reporters, 130f, 130
of raw vs. normalized responses for internal control
reporters, 140f, 138–139

BPC, see Base peak chromatogram
broom package, 233

c

C/C++ programming languages, 115
calcML() function, 123
Calibration curves, 207, 231
capture.output() function, 69
CAS registry numbers, see Chemical abstract service (CAS)
registry numbers
Categorical features, 232, 238–239

encoding as factors, 238
encoding of, 238–239
encoding with dummy variables, 238
one-hot encoding of, 238–239

Censored noise data, 166, 168–175, 186
Center for Computation Mass Spectrometry, 21

Centroid spectra
comparing theoretical m/z to, 88f, 87–88
determining, 87–88
overlaying raw data and, 84–87
profile peak and, 86, 86f

CentWave algorithm, 110, 111f

chemical abstract service (CAS) registry numbers, 2
Chemical ionization, 114
Chemical noise, 160, 164
chrom_plot() function, 153
chromatogram() function, 24, 101

max, aggregationFun, 24
sum, aggregationFun, 24

Chromatograms
exploratory data analysis with, 101–112
extracted ion, 101–106
for reaction monitoring, 106–112

Chromatographic artifacts, 102–106
Chromatographic data, 151, 229

analysis of, 151
characteristics of peaks, 151–160
for quality control, 226–229
frequency analysis of, 188–207
peak detection using, 160–188
quantification of peak area from, 207–225

CI (chemical ionization), 114
Classification, see also Regression, see also Supervised
learning
Classifier, 231

large margin, 265
linear, 258
non-linear, 265

Classifier performance measure
accuracy, 267
positive predictive power, 261–265
precision, 261–265
recall, 261–265
ROC area under the curve (AUC), 267
sensitivity, 261–265
specificity, 261–265

Closed file formats, 42
Clustering, 231, 232, 244–247, see Unsupervised learning,
see also Hierarchical clustering, see also K-means

hierarchical, 248f

K-means, 244–245
k-nearest neighbors (KNN), 249
using principal components, 245f

Code chunks, 39

Codeine, 75–82, 106
calculation of adducts to, 122t, 121–122
chemical formula determination for, 123–124
monoisotopic mass of, 116
plots of tabular data on, 77–82
reaction monitoring for, 106–112
reference spectrum for, 121, 122f

statistical summarization of, 75–77
colino package, 242
collect_predictions() function, 269
Color palettes, accessible, 13, 95
Colors, creating legends with, 79, 105
Columns, transposing rows and, 88
Comma-separated files, see CSV files
Complete noise data, 168
Completely isobaric compounds, 226
Complex numbers in R

imaginary part Im(), 190
magnitude abs() function, 190
magnitude of, 190
modulus Mod() function, 190
real part Re(), 190

Concentration
calibration using standards for, 209–225
errors due to non-linearity in, 212–213
from instrument response, 207, 209, 210
of quality control samples, 227–229

Conditional layers, 109f, 108–110, 153–154
Confusion matrix

logistic regression, 263f, 263–264
Support Vector Machine (SVM), 269
XGBoost, 279–280

Console output, xii
Continuous wavelet transforms (CWT), 161, 179–184
Contrast angle, 249
Control peptides, 60

batch similarity in matches for, 83f, 81–82
finding, 60–61

Controlled vocabularies, 43–44, 48–49
conv() function, 193, 194
Convergence rate, series, 188
Convolution theorem, 193

Cosine similarity, 248–253
defined in terms of distance, 249
lack of chemical meaning, 253
relationship Euclidian distance, 249f

relationship to contrast angle, 249
search results for tryptophan, 252–253
search results using, 253t

cosine_dist() function, 252
Cost function, 256, see also Loss function, see also

Objective function
CRAN (Comprehensive R Archive Network) repository, xii,
5, 17
CRAP (common Repository of Adventitious Proteins)
database, 60
Crash peak, 104
Cross-validation, 257, see also Train-test split

folds in, 265
k-fold, 265
rsample package, 232

Cross-validation (CV), 265
CSV (comma-separated) files, 1, 5, 41, 124
Cutoff frequency, for filter, 197–201
CWT (continuous wavelet transforms), 161, 179–184
cwt() function, 180
Cytochrome C oxidase subunit 2 (COX2), 142–149

d

Data analysis programs, 44–45
Data frames

about, 5
accessing elements of, 5, 6f

for ggplot2, 15
starting index of 1, 5
tibble vs., 9, 26

Data preparation
recipes package, 233

Data resampling, 232
Data sampling, 232
Data splitting, 232
Data wrangling, 41–74

about, 41
accessing data, 41–44
from multiple sources, 63–74
identification data example, 60–63
of result data, 58–60
types of data, 44

data() function, loading package data with, 116
Data-dependent acquisition (DDA) mode, 24, 60
Dates, conversion of strings to, 2
DDA mode, see Data-dependent acquisition mode
Decision trees, 272

Dendogram, 248f

Dendograms
used in hierarchical clustering, 245

density() function, 136–138
Derivative-based peak detection, 161–179

for start and end of peak, 175–179, 187f

noise estimation and, 164
Derivatives of raw data, computing and plotting, 162–163
Design patterns

accumulator, 67, 126–127
Deterministic component of signal, 188
Deviation vector, 165
DFT (discrete Fourier transform), 189
dials package, 233
Digial filters

analyzing, 193–197
Digital filters, 179, 193–207

designing optimal, 197–207
Dimensionality Reduction, see also Feature selection, see

also Principal component analysis
Dimensionality reduction, 242–243
Dimensions, see also Features

principal components as, 239
Discrete Fourier transform (DFT), 189

Distance, 287
between mass spectra, 248
relationship to similarity, 248

Distance, 244
Distance measurements

role in machine learning, 232
use in clustering, 244

distance() function, 249
distinct() function, 13
Distortion, peak, 196
Distortions

peak, 197
Distortions, peak, 189, 192, 203
dnl() function, 34–38
Don’t Repeat Yourself (DRY) principle, 135
Dot product, 248
Double blank samples, 209
dplyr package, 8, 9
filter() function, 32
improving manageability with, 28
joining tables with matching columns in, 37
reading TSV format with, 59
select() function, 9
stats and, 137
tibble and, 9

DRY (Don’t Repeat Yourself) principle, 135
Dummy variables, 238

created by one-hot encoding, 238
Dynamic noise level, 34–38

e

EICs, see Extracted ion chromatograms
Eilers, P. H. C., 156
Electron impact ionization, 247
Electron impact ionization (EI), 114
element_blank() function, 247
Empirical data, numeric integration of, 208
empty_psm() function, 67
Encoding catagorical variables, 238
End of peak

derivative method for finding, 163–164, 175–179
in term of expected variation, 164
noise and, 163–164
positive/negative derivative rule for, 163–164
wavelet-based method of finding, 186–188

enormCensored() function, 170
Ensemble methods, 273, see also Boosted trees, see also

Random forests
EnvStats package, 168–171

Euclidian distance, 253–254
relationship to vector angle, 249f

search results for tryptophan, 253–254
search results using, 254t

euclidian() function, 254
Expected variation, start/end of peak in terms of, 164
Experimental variation, removing, 133–141
Explainable AI, see Model interpretation, see SHAP, see

Variable importance
Explainable machine learning, 283–287

for individual examples, 284–287
Exploratory data analysis, 75–112

about, 75
building tables for, 63–73
value of, 100
with chromatograms, 101–112
with raw mass spectrometry data, 83–101
with tabular data, 75–82

exprs() function, 134–136
EXtensible Markup Language format, see XML format
Extract operator $, 6
extract_fit_parsnip() function, 260, 281
extract_tandem_match() function, 64
extract_workflow() function, 281

Extracted ion chromatograms (EICs, XICs)
evaluating overlapping m/z ions with, 102f–105f

overlaying, 105f, 104–106
producing, in MSnbase, 103f, 101–102
zooming in to select, 100f, 98–100

f

F-score, 132f, 131–133, 141f, 139–141, 148f, 146–147
F-test, checking effect of normalization with, 139
facet_grid() layer, 33–34
facet_wrap() layer, 77
factoextra package, 241
Factors

categorical features as, 238
strings as, 234
use with categorical features, 238

Factors, strings as, 10
Falling edge of peak, identifying, 177–178
Fast Fourier transform (FFT), 189
fda.usc package, 208
Feature conditioning, 232–236

about, 233
condition data set using bake(), 235
information leakage during, 234
using recipe package, 234–235

Feature engineering, 236–241, see also Dimensionality
reduction, see also Feature selection

about, 233
Feature importance, 260, 261f, see also Variable
importance, 272f, 282f

Feature selection, 242–243
about, 233
supervised, 242–243
unsupervised, 242

Features, 256
as columns in a table, 232
Bioconductor, 135
organization of, 232
types of, 232

FFT (fast Fourier transform), 189
fft() function, 190–191
File organization, 19
file.path() function, 19
Filter artifacts, 192
Filter coefficients, 204, 205f

Filter length, 204
bands parameter and, 203–204
for first and second derivative, 162–163
for SG filters, 161–163

Filter order, see Filter length
filter() function, dplyr and, 8

filterMsLevel() function, 24
filterMz() function, 134–136
finalize_workflow() function, 268
Finite impulse response (FIR), 204
fir1() function, 203–206
First derivative of raw data, computing and plotting, 161f

fit(), 259
Fit, for linear calibration model, 211f, 209–212
fit_resamples() function, 269
fix_names() function, 49
flextable package, 253
for loops, 55

parallel approaches vs., 57, 66
pmax() function vs. nested, 92–94

format() function, 91
Formula operators, 213
Fourier analysis, 186

designing optimal filters with, 197–207
of traces, 189–193
smoothing using, 161

Fourier transform, 188
Fourier transform (FT) detectors, 32
fourier transform (FT) detectors, 85
Fourier transform coefficients, 200f, 197–201
Fraction number, extracting, 66

Frequency
effect of smoothing filters on, 186
of signals and filters, 198f, 196–197

Frequency analysis, 188–207
for digital filters, 193–197
Fourier analysis of traces, 189–193
optimal filters from, 197–207

Frequency response, filter, 205f, 204–206
Frequency spectrum component, FFT, 191f, 190–193
Frequency truncation, 201f, 207f, 206–207
freqz() function, 196–197
Front edge of peak, 158f, 158–160
Fronting asymmetry, 160
FT (Fourier transform) detectors, 32
FT (fourier transform) detectors, 85
Full Width at Half Maximum (FWHM)

calculating, 158–160
data points above, 161, 182
second derivative behavior at, 163, 164f

full width at half maximum (FWHM), 86
Functional approximation, 188
Functional programming approach, 11, 233
fviz_eig() function, 241
FWHM, see Full Width at Half Maximum

g

Gas chromatography (GC), 101, 151
Gauss-Newton method, 219
geom_boxplot() layer, 130
geom_raster() layer, 90, 95, 180–182
geom_tile() layer, 181
Geometry layer, ggplot2, 16
get_cutoff() function, 198
get_falling_points() function, 177
get_ft_variance() function, 198, 203
get_p_value() function, 132
get_peak_apex() function, 155, 187
get_peak_back_time() function, 159
get_peak_end(), 177
get_peak_front_time() function, 159
get_peak_start() function, 176
get_reporters() function, 127
get_sg_filter_length() function, 162, 173
get_survey() function, 33
get_tmt_inten() function, 126, 127
getClassDef() function, 65
getLocalMaximumCWT() function, 183–184
ggarrange() function, 118, 119, 138
ggbiplot() function, 245

ggplot2 package, 2
customizing plots with, 27–28
lattice vs., 90
overlaying EICs with, 105f, 104–106
plots with conditional layers, 109f

plots with conditional layers in, 108–110, 153–154
plotting data with, 15
plotting heatmaps with, 95–101
plotting wavelet coefficients with, 180f–185f

total ion chromatogram in, 27f, 25–27
ggpubr package, 118, 138
GitHub, xiii, 123
Global Natural Products Social Network (GNPS), 61
Global Proteomics Machine, 60
Gradient boosting, 273, see Boosted trees, see also

XGBoost
Gradient boosting machines (GBM), 272–273
grepl() function, 28
grid_latin_hypercube() function, 275
grid_regular() function, 267
gsignal package, 161

building digital filters with, 193
moving average type filter designed with, 197–207
visualizing frequency content with, 196–197

h

HC, see Hierarchical clustering
HDF5 format, 42, 62
head() function, 11
Header rows, of spreadsheets, 2
Heatmap, 248f, 263f

heatmaply package, 247
heatmaply() function, 247
Heatmaps, 89–101

used in hierarchical clustering, 245
Heterogeneous models, 283
Heteroskedastic noise, 165, 185
Hierarchical clustering, 248f, 245–247
Higgs Boson Machine Learning Challenge, 273
High-resolution spectra, 113, 122
Homogeneous models, 283
Homoskedastic noise, 165
HTML (Hyper-Text Markup Language), 19, 39, 40f, 43, 62
Human Metabolite Database, 5
Human Proteome Organization, 46

Proteomics Standards Initiative (HUPO-PSI), 46
HUPO-PSI formats, 59
Hyper-Text Markup Language, see HTML
Hyperparameter

for Support Vector Machines, 265

Hyperparameter tuning, 265, see also Cross-validation, see

also Model optimization
Bayesian search for, 276–277
grid search for, 266–267, 275
support vector machine (SVM) using cross-validation,
268f, 265–267
XGBoost cross-validation, 277f

Hyperparameters, 265
for Support Vector Machines, 265

Hypothesis testing, 131–133

i

I() AsIs function, 213
ICP/MS (inductively coupled plasma/mass spectrometry),
114
IDE, see Integrated development environments (IDEs)
Identification data, 59–63
IDEs (integrated development environments),see also

RStudio IDE
Im() function, 190
Imbalanced data sets, 267
Imputation

of missing values, 236–238
Imputation, of missing values, 174f, 171–175
Inclusion lists, 33

Inductively coupled plasma/mass spectrometry (ICP/MS),
114
infer package, 130–133, 233
Information leakage, 234, 257, see also Data preparation,
see also Label leakage
initial_split() function, 258
Instrument configuration data, 44
Instrument methods, 50
Instrument response(s)

as an engineered feature for machine learning, 233
concentration from, 207, 209, 210
distribution of, 77, 79f

in reaction monitoring, 110–112
normalized, 208–209
plotting difference between expected and known, 212f,
211–212
with quadratic concentration curve, 211f, 213–214

instrumentInfo() function, 23
int.simpsons2() function, 208
Integrated development environments (IDEs), 2, 4,see also

RStudio IDE
inten_label() function, 27

Intensity
apex, 154–155
at peak start and end, 160
baseline correction for, 157f, 156
extracting maximum intensity peak, 126
extracting, from chromatographic data, 152
minimum, of precursor ions, 32–33
normalizing data on, 133–141
peptide reporter variation in, 142–149

intensity() function, 26
Interfering ions, identifying, 105
Internal control samples

hypothesis testing related to, 131–133
normalizing intensity for, 133–141
statistical analysis to evaluate, 126–131

Internal standards
identifying, for reaction monitoring, 107–108
in normalization techniques, 208–209, 226
peak area used for normalization, 208
peak picking for, 111f, 110–112
qualifier trace for, 152
quantifier trace for, 152
stable isotopic labeled version of compound as, 207

International Union of Pure and Applied Chemists (IUPAC),
114, 115

Internationalized Resource Identifier (IRI) standard, 49
interp_time() function, 159
Interpolation of raw data, 159
Interpretable machine learning, 269–270
Inversion

of Padé equation, 222–223
of quadratic equation, 214–215

Investigation file, 46
Investigation metadata, 45–50
Investigation-Study-Assay (ISA) Commons, 46t, 46–50
invisible() function, 69
invisible(capture.output(...)) statement, 69
Ion adducts, 120–122
Ion counting detectors, minimum intensities in, 32
Ion enhancement, 226
Ion intensity, 26
Ion ratio(s)

as an engineered feature for machine learning, 233
comparing qualifier and quantifier peak retention time to,
79–81
compound identification with, 226–227
in reaction monitoring, 110–112
of quality control samples, 227–228
plotting quantifier peak area vs., 80, 82f

plotting retention time vs., 81f, 79–81

Ion suppression, 226
Ions, with multiple charges, 113
IRI (Internationalized Resource Identifier) standard, 49
Irreducible error, 256

relationship with noise, 256
ISA (Investigation-Study-Assay) Commons, 46t, 46–50
ISA study

description, 47
title, 47

Isobaric interference, 101
Isobaric labeling methods, 126
IsoSpecR package, 115–120
IsoSpec data, 116
IsoSpecShort data, 116
IsoSpecShortZero data, 116
isotope abundance data, 116

Isotope abundance, 114–120
Isotopes, defined, 115
Isotopic fine structure, 116
IUPAC (International Union of Pure and Applied Chemists),
114, 115

j

JCAMP-DX format, 61–63
JSON (Javascript Object Notation) format, 43, 46

Julia, 2
Jupyter notebook system, 2

k

K-fold cross validation, 265–266
K-means clustering, 245f, 244–245

using the Hartigan-Wong algorithm, 244
K-Nearest-Neighbors (KNN)

imputation using, 236–238
k_means() function, 244
kable() function, 38
Kaiser window, 205f, 205f, 207f, 203–207
beta shape parameter, 204

Kaiser window specification
bands parameter, 203–204
magnitude parameter, 203–204
ripple_amplitude parameter, 203–204

kaiser() function, 203–206
keras package, 283
Kernel density estimation, 136–138
Kernel methods

for non-linear classification, 265
Kernel SHAP

variable importance from, 272f, 269–272
Kernels, for non-linear classification, 265

kernelshap package, 269
kernelshap() function, 269
kernlab package, 266
kmeans() function, 244
knitr package, 2, 19, 38
Known outcome, see Label
Knuth, Donald, 19, 135

l

Label, 256
Label leakage, 257

during feature selection, 242
in cross-validation, 265
in unsupervised learning, 247
indirect, 258

lag() function, 8
lambda parameter, 157f, 155–156
Large data files, directories for, 59
Large margin classifier, 265
last_fit() function, 269, 281
LaTex documents, 19, 39
lattice package, 90

Layers
conditional, 109f, 108–110, 153–154
facet_grid(), 33–34
facet_wrap(), 77
geom_boxplot(), 130
geom_raster(), 90, 95, 180–182
geom_tile(), 181
ggplot2, 15
ggtitle, 16
scale_color_manual(), 105
scale_fill_viridis(), 95
theme, 16
xlab(), 16, 28
xlim(), 16
ylab(), 16, 28
ylim(), 16

LC (liquid chromatography), 101, 151
LC-MS data, see Liquid chromatography with single stage
mass spectrometry data
LC-MS/MS, see Liquid chromatography with multiple-stage
mass spectrometry
left_join() function, 37, 146
Limit of detection, limit of quantification vs., 175
Limit of quantification, limit of detection vs., 175
Linear calibration curve, 211f, 209–212

Linear regression, 258
least squares method of, 209–210

Lipidomics, 273–282
Liquid chromatography (LC), 101, 151
Liquid chromatography with mass spectrometry (LC-MS)
data

concentration calibration for, 209–225
concentration error for, 213
heteroskedastic nature of, 185
noise in derivatives of, 162–163
numeric integration of, 208
signal and noise definitions for analyzing, 151

Liquid chromatography with multiple-stage mass
spectrometry (LC-MS/MS)

mass spectrometry data analysis example, 21–25
quantitative assays involving, 226
selected reaction monitoring (SRM) chromatogram from,
106
selected reaction monitoring SRM chromatogram from,
101

Literate programming, 2, 19, 39
lm() function, 210
Loading

of dimensions in Principal Component Analysis (PCA),
241

Local explanations
using SHAP, 285f, 286f

Local maxima, of CWT coefficients, 184f, 183–184
Location, peak, 155
Log transformations, for intensity values, 129, 145
log() function, 234
Logistic regression, 258–265, see also Classifier, see also

Supervised learning
confusion matrix
for benzodiazepine classifier, 263f

feature importance, 261f

PR curve for benzodiazepine classifier, 264f

ROC curve for benzodiazepine classifier, 262f

Loss function, see Cost function, see Objective function

m

m/z, see Mass-to-charge ratio
MA (moving average) smoothers, 193
Maar wavelet, 181f, 179–184

Machine learning
classification, 231
defining, 231
explainer methods, 270
pipelines, 232
regression, 231
relationship to statistical inference, 232
supervised, 231
types of, 231–232
unsupervised, 231

Machine learning pipelines
workflows package, 233

Maclaurin series, 189
MAD (median absolute deviation), 198
mad() function, 198
MAF (Metabolite Assignment File) format, 59
magnitude parameter, kaiserord() function, 203–204
Magnitude, of Fourier transform coefficient, 190–191
magrittr package, 11
Markdown, 20
Mascot, 64, 142–144
Mascot Generic File (MGF) format, 121
Mascot generic file (MGF) format, 121

Mass
determining molecular formula from, 113, 122–124
monoisotopic, 113–124

Mass spectra, 113–150
analysis of, 113
basic data analysis for, 21–24
molecular weight calculations from, 114–124
relationship between levels of, 29–31
statistical analysis of, 124–149

Mass spectrometers
chemical formula determination with, 122
chromatographic data from, 151, 229
discovery of isotopes using, 115
types of data generated by, 41
uses of, xi

Mass spectrometry data
accessing, 41–44
types of, 44
wrangling, see Data wrangling

Mass spectrometry data analysis (generally)
basic spectral data for, 21–24
Bioconductor packages for, 17
complexity of, xi
MassIVE repository example, 21–25
plotting data for, 24–28
RMarkdown for reports, 40f, 39
tidyverse packages for, 25–38

Mass-to-charge ratio (m/z)
binning values for, 91
filtering based on range of, 101–102
finding range of, 90–91
for ions created by adducts, 120–122
for ions with multiple charges, 113
for positive ions created by adducts, 121t

ions with overlapping, 102–106
isobaric interference and, 101
mass spectrum peak and, 113
theoretical vs. centroided values of, 88f, 87–88

MassBank of North America (MoNA) repository, 249
MassIVE repository

data analysis example from, 21–39
result data example from, 59–60

MassSpecWavelet package, 179–184
MassTools package, 123

Matrix package, 88
max() function, 90
Maximum intensity peak, 126
Maximum likelihood estimate (MLE), 167
Mean

of censored normal data, 170
of normal distribution, 167

Mean Squared Error (MSE), 256
bias-variance decomposition, 256

Median absolute deviation (MAD), 198
Median polishing, 142
median() function, 198
Memorize data, see Overfitting
Meningioma grading example, 273–282
MetaboBank repository, 59
Metabolite Assignment File (MAF) format, 59
Metabolite identification, reading results of, 59
Metabolites data repository, 46
Metabolomics, 273–282
Metadata

from readMSData(), 28–31
in R Markdown documents, 39
investigation, 45–50

Metapramming, 26
methods package, 65

methods() function, 70
metric_set() function, 267
mexh() function, 180
Mexican Hat, 181f, 179–184
MGF (Mascot Generic File) format, 121
MGF file format, 62, 63
MIAPE (Minimum Information About a Proteomics
Experiment), 46
Microsoft Excel, 1, 2, 42, 75
min() function, 90
Minimum Information About a Proteomics Experiment
(MIAPE), 46
Missing elements or attributes, in Skyline, 55–56
Missing values, 12, 171–175, 232, 236–238

plotting, 237f, 236
MLE (maximum likelihood estimate), 167
Mod() complex modulus function, 190
Model complexity

effect on bias and variance, 257f

Model evaluation, see also Confusion matrix, see also

Cross-validation, see also Precision-Recall curve, see also

ROC curve
Model formula, Base R, 210
Model interpretation, 283–287
Model optimization, 265–267, 275–277

Model specification
parsnip package, 232

Molecular fingerprint, 254–255
mass spectrum as, 254

Molecular formula, 113–124
Molecular identification, 59–60
Molecular weight calculations, 114–124

computing molecular formulas from mass, 122–124
for ion adducts, 122–124
isotope abundance calculations, 115–120
monoisotopic mass calculations, 114–115

Monoisotopic mass, 113–124
Mother wavelet, 180
Moving average (MA) smoothers, 193
Moving average type filter, designing, 197–207
MsBackendMgf package, 121
MsBackendMsp package, 249
MSConvert program, 61, 83
MSE, (Mean Squared Error), 256
MSmap() function, 89

MSnbase package, xiii, 17, 83
EICs/XICs in, 101–106
extracting chromatographic peak data with, 152
grepl() function and, 28
heatmap function in, 89
MSmap() function, 89f

obtaining basic mass spectral data with, 22–24
plotting data with, 24–25
reading mzTab format with, 59
reading raw data files with, 70–73
row names in, 30

MSnExp objects, 30–31
fData() accessor function, 30–32
fvarLabels() accessor function, 30

MSnSet class, 134–135
MSP file format, 63, 249
Multidimentional data, binning and regularizing, 88–101
Multiple stage mass spectrometry

SRM transitions in, 50
Multiple-stage mass spectrometry (MS/MS), see also

Liquid chromatography with multiple-stage mass
spectrometry (LC-MS/MS)

SRM transitions in, 51
mutate_if() function, 238
mz() function, 90, 250
mzid files, see mzIdentML files

mzIdentML files, 59–60, 64–70, 143–145
mzML format, 63, 82, 128
mzML_read() function, 128
mzR package, xiii, 17, 23, 41–42, 128
mzTab format, 59
mzXML format, 22, 61t

n

Named character vectors, 55
Named matrix, 92
National Institute of Standards and Technology (NIST), 63
Naïve Bayes (GaussianNB), 283
Negative ion adducts, 121
netCDF format, 42, 62
Neural networks

deep learning networks, 283
multi-layer perceptrons, 283

NIST (National Institute of Standards and Technology), 63
nls() function, 219–220
No Free Lunch Theorem (NFLT), 287
No-intercept results, 215, 219f, 218, 223
Nodes

XML, 53

Noise
and derivative filter length, 162–163
chemical, 160
defining, 151
detecting real peaks vs., 163–164
homoskedastic vs. heteroskedastic, 165
relationship to deviation, 165

Noise estimation
wavelet based, 184–186

Noise vector, 166f, 165
Non-censored noise data, 168
Non-detects (term), 167
Non-physical solutions, for quadratic equations, 214–215
Normal distribution, 167–168
normalise() function, 133–136
Normality testing, 165–168, 174–175

Normalization
by internal standards, 226
checking effect of, 136–138
failed, 141
for use in hierarchical clustering, 246
of filter coefficients, 193
of instrument response, 208–209
of intensity data, 133–141
of machine learning features, 235
quantile, 133–141
unit length, of vectors, 248, 251, 254
with biological variation, 142–149

Notebook environments, 2
Null hypothesis, 132f, 131–133, 141f, 140–141, 148f, 146–
147
Numeric integration, 208
Nyquist criteria, 191, 204

o

Objective function, see Cost function, see Loss function
Observations

as rows in a table, 232
issues with measuring distance between, 232

One-hot encoding, 238
of categorical features, 238–239
using step_dummy(), 238

Open file formats, 42, 61t, 59–63
openMSfile() function, 23, 128
Optional XML attributes, 53, 55–56, 58
Order, filter, see Filter length, 204
Over smoothing, 192
Overfitting, 214, 234, 256, see also Overfitting

relationship with memorization of data, 256
Overlapping signals, 87, 160
Oxycodone, 75–82, 106

plots of tabular data on, 77–82
statistical summarization of, 75–77

p

p-value
calculating, 132, 141, 147–148
for Shapiro–Wilk test, 168
for Shapiro-Wilk test, 167

Package data
loading using data(), 116

Padé approximate, 221f, 218–225
Padé, Henri, 218
Paired t-tests, 148–149

palette.colors() function, 13
pandoc program, 39
Panorama Public repository, 51
Parsing files, 51
parsnip package, 232
PDF (Portable Document Format), 39
Peak detection, 160–188

data smoothing and, 164–165
derivative based, 161–179
finding start and end of peak, 175–179, 186–188
limit of, 175
noise estimation and, 164–175, 184–186
wavelet based, 179–188

Peak end index, 178
Peak picking

with xcms, 186–188
determining accuracy of, 87–88
diagnosing issues with, 179
for reaction monitoring, 111f, 110–112
regions of interest for, 155
with xcms, 111f, 110–112
with MSConvert program, 83

Peak start index, 177
peak_plot() function, 119

Peaks
baseline correction for, 155–156
characteristics of, 151–160
location, 155
quantification of area, 155, 207–225
relationships between derivatives of, 161
shape, 151, 155
symmetry, 154, 158–160
width, 158–160

peaksWithCentWave() function, 186, 187
Penalized least squares method, 156
Peptide reporter intensity variation, 142–149
Peptide search, 59, 65
Periodic treatment of mass spectrometer data, 189
Perl, 3
philentropy package, 249
pickPeaks() function, 87
Pipes, 11

method chaining with, 11, 25
native vs. %>%, 11

pivot_longer() function, 95, 129, 180–184, 240
pivot_wider() function, 129, 240
plot() function, 25
Plots and plotting

removing ggplot() elements, 247

Plotting and plots
after sinc function filtering, 202f, 201–203
checking effect of normalization with, 137f, 138
chromatographic, 153–154
confusion matrix, 263f

for hierarchical clustering, 248f

for linear calibration curve, 211f, 210–212
for mass spectrometry data analysis, 24–28
heatmap, 248f, 263f

heatmaps, 94–101
hyperparameter tuning cross-validation performance,
268f, 277f

in MassSpecWavelet package, 180
in Base R vs. ggplot2, 13–16
in Fourier analysis, 191f, 190–193
magnitude spectrum in the Nyquist limit, 192f

of backward calculated sum of variance of FT
coefficients, 200f, 199–200
of clusters, 245f

of concentration curve residuals, 212f, 211–212
of data smoothed with optimized Kaiser windowed sinc
function, 207f, 206–207
of dendogram, 248f

of filter coefficients, 194
of frequency spectrum component of FFT, 191f, 190–193
of local maxima of CWT coefficients, 184f, 183–184

of missing values, 237f, 236
of noise vectors, 166f, 165
of principal component loading, 242f

of principal components, 241f

of sinc filter function, 201f

of start and end times from derivative method, 179f, 178–
179
of wavelet coefficients, 182f, 184
Precision-Recall (PR) curve, 264f, 271f, 281f

Receiver Operating Characteristic (ROC) curve, 270f,
279f, 280f

SHAP force plot, 285f, 286f

variable importance, 261f, 272f, 282f

with conditional layers, 109f, 108–110
pmax() function, 94
Positive ion adducts, 121, 121t

Positive predicitive power, 261–265
Power density estimation, 190
prcomp() function, 240

using with normalized data, 240
Precision, 261–265
Precision-Recall (PR) curve, 264–265, 271f, 281f

of logistic regression classifier, 264f

of support vector machine (SVM) classifier, 271f

of XGBoost classifier, 281f

Precursor ions, minimum intensity of, 32–33
Precursor scan numbers, columns of, 71–73
predict() function, 210, 260
Predictors, see also Features
Preexponential coefficients, 213
prep() function, 235

use for unsupervised learning, 235
Principal component analysis (PCA), 241f, 239–241
Principal Components

loading, 240
variance explained by, 242f

Profile data, 86f, 84–87
Profile peak, 86f, 86–88
Profiling, code, 92–94
Project organization, 19
Protein search results, reading, 59
Proteomics, 62
ProteoWizard, 61
Proton mass, 114
PSMatch package, 59–60, 64–65
pull() function, 137
Python, 2, 3

q

Q-Q plot
for censored noise data, 170f, 169–173
for complete normally distributed noise, 168, 169f

for imputed censored noise data, 173f

qqnorm() vs. qqPlotCensored(), 170
testing normality of noise with, 167f, 165–166

qqnorm() function, 169
qqPlotCensored() function, 169
Quadratic calibration curve, 209, 213–218, 223
Quadruple mass spectrometers, 86
Qualifier, 76

checking identity of measured compound with, 226
identifying by name, 108
peak retention time for, 80f, 77–79
ratio of quantifier area to area of, see Ion ratio

Qualitative results, 58
Quality control, 158, 227–229
Quantification of peak area, 207–225

calibration with standards for, 209–225
limit of, 175
normalized instrument response in, 208–209
numeric integration for, 208

Quantifier, 76
identifying by name, 108
peak retention time for, 79f, 80f, 77–79
plotting, 154f, 154
plotting ion ratios vs. peak area for, 80, 82f

ratio of qualifier area to area of, see Ion ratio
quantify() function, 133–136
Quantile normalization, 133–141
Quantitative analysis, peak area for, 207
Quantized data, 167

r

R Data Serialization (RDS), 124
R GUI IDE, 4

R programming language (generally), see also Base R
about, 1
accessing data in files with, 41
and tidy data principles, 8
as scripting language, 3
computing coefficients from Padé equation in, 219–220
conventions for, xii
data frames in, 5, 8
downloading/installing, xii
for exploratory data analysis, 75
in RStudio IDE, 4, 4f

ISA model in, 46–50
plotting data in, 13–16
repeated code from cutting and pasting, 66
tibble package, 9
tidyverse packages for, 8, 10
using secondary query languages vs., 56

Radial Basis Function (RBF), 265
Radial Basis Function (RBF) Support Vector Machine
(SVM), 266
Random component of signal, 188
Random forest, 273, see Ensemble methods, see also

Boosted trees, see also Decision trees
Random noise, 164–175

distribution of, 165

Raw mass spectrometry data
binning and regularizing techniques, 88–101
binning of retention time, 94
centroiding and profile peak processing, 87–88
exploring, 83–101
MSnbase package to read, 70–73
open data formats for, 61t, 61
plotting heatmaps of, 94–101
profile data, 84–87
wrangling, from multiple sources, 63–73

Rdisop package, 115, 123
RDS, R Data Serialization format, 124
Re() function, 190
Reaction monitoring, see Selected reaction monitoring
(SRM)
read.csv() function, 5
read_csv() function, 10
read_file() function, 42
read_tsv() function, 59
read_xml() function, 41, 53
ReadBin() function, 42
readISAtab() function, 46–50
readMSData() function, 24, 70
readMSdata()

mode argument, 24, 70

readr package, 10
readSRMData() function, 151
Rearrangement, ion, 122
Recall, 261–265
Receiver Operating Characteristic (ROC) curve, 262f, 262–
263, 270f, 279f, 280f

of logistic regression classifier, 262f

of support vector machine (SVM) classifier, 270f

of XGBoost classifier, 279f, 280f

recipe package
feature conditioning with, 234–235
imputation methods, 238

recipe() function, 234
recipes package, 233
Recommended packages, R, 4
Refactoring, 95–97
Region of interest, for peak detection, 155
Regression, 231
Regular expression matching, 66, 108
Regularization, see Model complexity, see Overfitting
Regularizations techniques, 88–101
Reinforcement learning, 283
ReinforcementLearning package, 283
Relational databases

normalization, 8

remotes package, 123
repeat loops, 56
Reporter ions, in TMT approach, 60
Repositories, data storage in, 44
Reproducible computation, 39
Reproducible data analysis, 18–20, 75
Reproducible research, 4, 18, 19
Resampling ANOVA, 131–133
Residuals, concentration curve, 213–214

from linear concentration curve, 211–212
from Padé equation, 222f, 221–222
from quadratic concentration curve, 215f

patterns in, 209, 211–212
Result data, 58–60
Retention time, 26

binning, 92–94
expected range of, 155
extracting, 66
extracting, from chromatographic data, 152
finding range for, 90–91
for front and rear edges of peak, 158f, 158–160
for peak start from CWT method, 187
plotting distribution of, 77f–79f

plotting ion ratios vs., 81f, 80–81
retry package, 128

retry() function, 128
Ringing, see Ripple effects
Ripple effects, 189, 192, 197, 203
ripple_amplitude parameter, kaiserord() function, 203–204
Risa package, 46–50
Rising edge of peak, 176

minimum length, 176
RMarkdown documents, 20, 40f, 39
Robust Regression on Order Statistics (rROS) method, 170–
173
roc_auc() function, 262
roc_curve() function, 262
Roll off, calibration curve with, 209, 219f

Roughness penalty, 156
Rows, transposing columns and, 88
rROS (Robust Regression on Order Statistics) method, 170–
173
rsample package, 232
rstatix package, 149
RStudio IDE, xii

downloading, 4
Help feature, 71
knitr and R Markdown support in, 39
notebook support in, 2
startup interface, 4f

rtime() function, 26

Ruby, 3
Run time, of pmax() vs. nested for loops, 92–94
run_info() function, 23

s

S programming language, 1
S4 object paradigm, 17
sample_n() function, 260
Samples

Bioconductor, 135
Sampling frequency, 153
Saturated calibration

Padé equation for, 224f, 223–225
quadratic equation for, 219f, 216–218

Savitzky–Golay (SG) filters, 161–163
analyzing, 193–197
boxcar filter vs., 195f, 196f, 198f

deterministic component of signal with, 188
filter length, 161–162
finding start and end of peak with, 179
Kaiser windowed sinc function vs., 205f, 205f, 204–206
polynomial order, 161
standard deviation computed from use of, 186

scale_color_manual() layer, 105
scale_fill_viridis() layer, 95

scale_y_continuous() function, 27–28
Scaling factor, sgolayfilt() function, 162
Schema, file, 43

defined, 43
Skyline, 51–53, 54f

XML, 51, 52f

Scheme, 1
Scree plot, 241, 242f

Scripts, R, 4
sd() function, 175
Second derivative of raw data, computing and plotting,
161f

select_best() function, 267
Selected reaction monitoring (SRM), 101, 106–112, 151

defined, 106
Selector operator [], 9, 32
Sensitivity, 261–265
Sequence libratries, 44
Sequence operator :, 6
Serine, time-of-flight spectrum of, 14f–16f

sessionInfo() function, 18–19
SG filters, see Savitzky–Golay filters
sgolay() function, 193
sgolayfilt() function, 162, 175

SHAP, see Explainable AI, see SHapley Additive
exPlanations, see also Model interpretation, see also

Variable importance
Shape, peak, 151, 155
Shapiro-Wilk test of normality, 165, 167–168, 174–175
shapiro.test() function, 165, 167–168
SHapley Additive exPlanations (SHAP), 270

force plot, 285f, 286f

global explanations, 269–272
kernel method, 270
local explanations, 284–287

shapviz package, 271
shapviz() function, 271, 284
Shell-scripts, 3
SIL compounds, see Stable Isotopically Labeled compounds
Silencing functions, 69
Similarity

defined in terms of distance, 248
of mass spectra, 248

Simpson’s rule, 208
Sinc function filter, 201f

frequency truncation from, 201f, 200–201
frequency truncation with, 207f, 206–207
with Kaiser window, 205f, 205f, 207f, 204–207

Single reaction monitoring (SRM), 50, 57
Skyline, 50

Skyline main documents, 51–58
Smoothing and smoothed data

comparison of raw and imputed censored data, 174f

computing peak characteristics from, 161–162, 161f

for noise calculation, 173–175
over smoothing, 192
with boxcar vs. Savitzky–Golay filter, 196f, 194–196
with Fourier analysis, 188–189
with frequency truncation, 202f, 201–203
with optimized Kaiser windowed sinc function, 207f, 206–
207

spec() function, 11
Specificity, 261–265
specify() function, 131
Spectra package, xiii
bin() function of, 91, 250
exploring raw data with, 83–88
picking peaks with, 87

Spectra() function
reading MGF files with, 121

Spectral contrast angle, 249f

Spectral libraries, 44
duplicate entries, 253
reading, 249
searching, 247

Spectrum search
cosine similarity, 253t

Euclidian distance, 254t

example of, 249–255
Tanimoto coefficient, 255t

Splines, 189
Square functions, Fourier analysis of, 188, 200–201
SRM, see Selected reaction monitoring
SRM (Single Reaction Monitoring), 50, 57
Stable Isotopically Labeled (SIL) compounds, 207
stable isotopically labeled (SIL) compounds, 76
Standard deviation

for noise estimation, 185
for normal distribution, 167
impact of missing data on, 171, 173
of censored normal data, 170

Standard formats, 43
Standards, calibration with, 209–225
Start of peak

derivative method for finding, 163–164, 175–179
in terms of expected variation, 164
noise and, 163–164
positive/negative derivative rule for, 163–164
wavelet-based method for finding, 186–188

Statistical analysis
evaluating internal control samples, 126–131
evaluating peptide reporter intensity variation, 142–149
hypothesis testing with resampling ANOVA, 131–133
normalizing intensity data, 133–141
of high-resolution mass spectra, 124–149
with R programming language, 1

Statistical summarization, of tabular data, 75–77
stats package
dplyr and, 137
Fourier analysis with, 190–191
Shapiro-Wilk test of normality in, 165

Step-function basis system, 189
step_dummy() function, 238
step_impute_knn() function, 236
step_log() function, 234
step_naomit() function, 236
step_normalize() function, 234
step_pca() function, 240
step_rm() function, 234
step_select_linear() function, 243
step_string2factor() function, 238
str() function, 5
str_detect() function, 108
str_match() function, 66

str_match_all() function, 253
Stratification, 257
Structural libraries, 44
Student’s t-test, 228
studies.descriptions S4 slot, 47
Study assay file, 46
Study file, 46
study.titles S4 slot, 47
Subsets, data frame, 7
Subtitles, graph, 28
summarise() function, 12, 31
summary() function, 76–77, 210
Supervised learning, 231, 256–287,see also Classifier, see

also Regression
Support Vector Machine, 265–272,see also Classifier, see

also Kernel methods
cost hyperparameter, 265
feature importance from, 272f

hyperparameter tuning, 268f

PR curve for benzodiazepine classifier, 271f

ROC curve for benzodiazepine classifier, 270f

shape hyperparameter, 265
sv_importantance(), 272f

sv_importantance() function, 271
SVM, see Support Vector Machine
svm_rbf() function, 266

Symmetry, peak, 154, 158–160
Syntactic column names, 48–50
Sys.time() function, 92–94

t

t(), matrix transposition function, 88
t-tests, 148–149, 228
Tab-separated-value (TSV) format, 46, 59
table() function, 31
Tables

changing shape of, 129–130
joining, with matching columns, 37, 146

Tabular data
exploring, 75–82
plots to explore, 77–82
statistical summarization of, 75–77

Tailing asymmetry, 160
Tandem mass spectrometry, see Multiple-stage mass
spectrometry (MS/MS)
Tandem Mass Tag (TMT) approach, 59, 124, 126, see also

TMT10plex experiment
Tanimoto coefficient

search results for tryptophan, 255t, 254–255
Taylor series, 189, 218
tensorflow package, 283

Test set, 257
Test statistic, for hypothesis testing, 131
testing() function, 258
Text file format, 41
Theme layer, 16
Theonella swinhoei, 21
Thermo Scientific, raw files from, 61t, 61
Thomson, J.J., 115
tibble package and tibbles, 9

converting PSM() output to, 65–68
converting binned intensity lists into, 92
creating, from ISA assay tables, 50
data frames vs., 9, 26
extracting data from Skyline main document into, 51–58
for plotting data, 26
help page, 12
print() function, 9
printing options for, 12
pull() function, 9

TIC, see Total ion chromatogram
Tidy Data principles

for machine learning, 232

Tidy data principles
about, 8
benefits of using, 34
for changing table shape, 129–130
for ISA assay tables, 48–49
for mass spectrometry data analysis, 28–38

tidyclust package, 233, 244
tidymodels

nested objects in, 281
tidymodels packages, 8, 231

about, 232–233
approach to ANOVA, 130–133

tidyr package, 129
tidyverse, 10
tidyverse packages, 2

about, 8
for mass spectrometry data analysis, 25–38
moving application-specific data to, 63–74
RStudio Team support for, 4

Time, of peak apex, 155
Time-domain filtering, 193
time-of-flight (TOF) instruments, 86
Time-of-flight (TOF) spectrum of serine, 14f–16f

Title layer, 16

TMT10plex experiment, see also APLDNDIGVSEATR
control peptide, see also Tandem Mass Tag (TMT)
approach

evaluating internal control samples for, 126–131
hypothesis testing in, 131–133
normalizing intensity data from, 133–141
statistical analysis of spectra for fragment ions, 125–126

TOF (time-of-flight) instruments, 86
TOF (time-of-flight) spectrum of serine, 14f–16f

Top-scoring scans, finding, 143
top_tandem_scans() function, 64
torch package, 283
Total error, 256
Total ion chromatogram (TIC), 24

customizing, 29f, 27–28
in ggplot2, 27f, 25–27
in Base R, 25f

Train-test split, 257–258
benzodiazepines data, 258

Training set, 257
training() function, 258
TraML (Transitions Markup Language) format, 50
Transitions Markup Language (TraML) format, 50
Trapezoidal rule, 208
Tree-based classifiers, 272
treeshap package, 270, 284

treeshap() function, 284
treeshap function, 284
Trigonometric functions, as bases, 189
Tryptophan

spectral library entries for, 251
Tryptophan, binned mass spectrum, 252f

tune package, 233
tune_bayes() function, 276
tune_grid() function, 267

u

unique() function, 11
unit_norm() function, 251
United States Environmental Protection Agency, 170
Units of concentration, 49
University of California, San Diego, 21
Unsupervised learning, 231–256, see also Clustering

compared to supervised learning, 256
feature conditioning for, 235–236
limitations of, 255

utils package, 70

v

Validation, file, 51, 64–67, 142, 143

var() function, 198
Variable importance, 260, see also Feature importance, see

also Feature selection, see also Model interpretation
global, 261f, 272f, 282f, 283–284
global, using SHAP, 269–272
local, 284–287
using Kernel SHAP, 269–272
using z-score in logistic regression, 260

Variables, see also Features
Variance, 256
Variance calculation, of cutoff frequency, 198
vars() function, 77
Vectorization

using the apply() function, 129, 251–252
vfold_cv() function, 267
vip() function, 260
Virtual Machines, 19

w

Wavelet coefficients
for noise estimation, 185f, 184–186
local maxima of, 184f, 183–184
plotting, 182f, 184

Wavelet-based peak detection, 179–188
finding start and end of peak, 186–188
noise estimation and, 184–186

while loops, 57
Whittaker smoother, 155–156
Wickham, H., 41
Width, peak, 158–160
Windowing function, 198, 203
workflows package, 233

x

X! Tandem search engine, 60
low threshold expectation values in, 65
MGF file reading capability of, 63
mzIdentML files from, 60
peptide modification information from, 68
variable names in Mascot vs, 142–143

xcms package
computing peak start and end from CWT with, 186–188
for system performance analyses, 112
locating region of interest with, 155
peak picking and area determination with, 111f, 110–112
peak picking with, 187f, 186–188

xcms package
peak area determined by Simpson’s rule vs., 208

XGBoost, 273, see Boosted trees, see also Gradient
boosting

Cross validation ROC curve from best tuned model, 279f

feature importance, 282f

hyperparameter tuning, 277f

PR curve from test data, 281f

ROC curve from test data, 280f

SHAP force plot, 285f, 286f

XICs, see Extracted ion chromatograms
xlab() layer, 16, 28
xlim() layer, 16
xls format, 42
xlxs format, 42
XML package, 51
XML (eXtensible Markup Language) format

accessing data in, 41
directly reading files in, 51–58
instrument method data in, 51
opening files in, 21–24
parsing files in, 59
raw data in, 62
storing intermediate data in, 124

XML parsers, 42
xml2 package, 42, 51–58
xml_find_all() function, 56

XPath Language, 53, 56, 56t

xml_find_all() function, 53–57

y

Y-axis, labeling, 27
YAML (Yet Another Markdown Language), 39
yardstick package, 233
ylab() layer, 16, 28
ylim() layer, 16

z

zip format, 42
Zooming in on heatmaps, 97f–101f

WILEY END USER LICENSE

AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Table of Contents
	Title Page
	Copyright
	Dedication
	Foreword
	Preface
	Acknowledgments
	About the Companion Website
	Chapter 1: Data Analysis with R
	1.1 Introduction
	1.2 Modern R Programming
	1.3 Bioconductor
	1.4 Reproducible Data Analysis
	1.5 Summary

	Chapter 2: Introduction to Mass Spectrometry Data Analysis
	2.1 An Example of Mass Spectrometry Data Analysis
	2.2 Using the Tidyverse in Mass Spectrometry
	2.3 Dynamic Reports with RMarkdown
	2.4 Summary

	Chapter 3: Wrangling Mass Spectrometry Data
	3.1 Introduction
	3.2 Accessing Mass Spectrometry Data
	3.3 Types of Mass Spectrometry Data
	3.4 Result Data
	3.5 Example of Wrangling Data: Identification Data
	3.6 Wrangling Multiple Data Sources
	3.7 Summary

	Chapter 4: Exploratory Data Analysis
	4.1 Introduction
	4.2 Exploring Tabular Data
	4.3 Exploring Raw Mass Spectrometry Data
	4.4 Chromatograms and Other Chemical Separations
	4.5 Summary

	Chapter 5: Data Analysis of Mass Spectra
	5.1 Introduction
	5.2 Molecular Weight Calculations
	5.3 Statistical Analysis of Spectra
	5.4 Summary

	Chapter 6: Analysis of Chromatographic Data from Mass Spectrometers
	6.1 Introduction
	6.2 Chromatographic Peak Basics
	6.3 Fundamentals of Peak Detection
	6.4 Frequency Analysis
	6.5 Quantification
	6.6 Quality Control
	6.7 Summary

	Chapter 7: Machine Learning in Mass Spectrometry
	7.1 Introduction
	7.2 Tidymodels
	7.3 Feature Conditioning, Engineering, and Selection
	7.4 Unsupervised Learning
	7.5 Using Unsupervised Methods with Mass Spectra
	7.6 Supervised Learning
	7.7 Explaining Machine Learning Models
	7.8 Summary

	References
	Index
	End User License Agreement

